These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19476370)

  • 1. A microfluidic diluter based on pulse width flow modulation.
    Ainla A; Gözen I; Orwar O; Jesorka A
    Anal Chem; 2009 Jul; 81(13):5549-56. PubMed ID: 19476370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions.
    Lee K; Kim C; Kim Y; Jung K; Ahn B; Kang JY; Oh KW
    Biomed Microdevices; 2010 Apr; 12(2):297-309. PubMed ID: 20077018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators.
    Lee K; Kim C; Ahn B; Panchapakesan R; Full AR; Nordee L; Kang JY; Oh KW
    Lab Chip; 2009 Mar; 9(5):709-17. PubMed ID: 19224022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial mixing of microfluidic streams.
    Neils C; Tyree Z; Finlayson B; Folch A
    Lab Chip; 2004 Aug; 4(4):342-50. PubMed ID: 15269802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A plug and play microfluidic device.
    Fujii T; Sando Y; Higashino K; Fujii Y
    Lab Chip; 2003 Aug; 3(3):193-7. PubMed ID: 15100773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations.
    Kim C; Lee K; Kim JH; Shin KS; Lee KJ; Kim TS; Kang JY
    Lab Chip; 2008 Mar; 8(3):473-9. PubMed ID: 18305867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-induced mixing in microfluidic channels.
    Hellman AN; Rau KR; Yoon HH; Bae S; Palmer JF; Phillips KS; Allbritton NL; Venugopalan V
    Anal Chem; 2007 Jun; 79(12):4484-92. PubMed ID: 17508715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-driven motion of supported lipid bilayers in microfluidic channels.
    Jönsson P; Beech JP; Tegenfeldt JO; Höök F
    J Am Chem Soc; 2009 Apr; 131(14):5294-7. PubMed ID: 19309139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic pool structure for cell docking and rapid mixing.
    Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL
    Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microchannel device using self-spreading lipid bilayer as molecule carrier.
    Furukawa K; Nakashima H; Kashimura Y; Torimitsu K
    Lab Chip; 2006 Aug; 6(8):1001-6. PubMed ID: 16874369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic-based system for analysis of single cells based on Ca2+ flux.
    Zhang X; Yin H; Cooper JM; Haswell SJ
    Electrophoresis; 2006 Dec; 27(24):5093-100. PubMed ID: 17117377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of microfluidic mixing using time pulsing.
    Glasgow I; Aubry N
    Lab Chip; 2003 May; 3(2):114-20. PubMed ID: 15100792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superquenching as a detector for microsphere-based flow cytometric assays.
    Zeineldin R; Piyasena ME; Bergstedt TS; Sklar LA; Whitten D; Lopez GP
    Cytometry A; 2006 May; 69(5):335-41. PubMed ID: 16604535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.
    Liu K; Tian Y; Burrows SM; Reif RD; Pappas D
    Anal Chim Acta; 2009 Sep; 651(1):85-90. PubMed ID: 19733740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar lipid bilayer reconstitution with a micro-fluidic system.
    Suzuki H; Tabata K; Kato-Yamada Y; Noji H; Takeuchi S
    Lab Chip; 2004 Oct; 4(5):502-5. PubMed ID: 15472735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital microfluidic approach to homogeneous enzyme assays.
    Miller EM; Wheeler AR
    Anal Chem; 2008 Mar; 80(5):1614-9. PubMed ID: 18220413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.