These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19476391)

  • 21. An Analytical Differential Resistance Pulse System Relying on a Time Shift Signal Analysis-Applications in Coulter Counting.
    Birkin PR; Linfield S; Denuault G; Jones R; Youngs JJ; Wain E
    ACS Sens; 2019 Aug; 4(8):2190-2195. PubMed ID: 31290312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separating large microscale particles by exploiting charge differences with dielectrophoresis.
    Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH
    J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.
    Sureda M; Miller A; Diez FJ
    Electrophoresis; 2012 Sep; 33(17):2759-68. PubMed ID: 22965723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput cell and particle characterization using isodielectric separation.
    Vahey MD; Voldman J
    Anal Chem; 2009 Apr; 81(7):2446-55. PubMed ID: 19253950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
    Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ
    Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revisit of wall-induced lateral migration in particle electrophoresis through a straight rectangular microchannel: Effects of particle zeta potential.
    Liu Z; Li D; Saffarian M; Tzeng TR; Song Y; Pan X; Xuan X
    Electrophoresis; 2019 Mar; 40(6):955-960. PubMed ID: 30004121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of electrophoretic mobility of microparticles near a solid wall--experimental verification.
    Liang Q; Zhao C; Yang C
    Electrophoresis; 2015 Mar; 36(5):731-6. PubMed ID: 25421107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface modification for polystyrene colloidal particles with controlled charge densities.
    Lee J; Kwon OS; Shin K; Song JM; Kim JS; Seo YS; Tael G; Jon S
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3995-9. PubMed ID: 18047103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice.
    Kenyon SM; Weiss NG; Hayes MA
    Electrophoresis; 2012 Apr; 33(8):1227-35. PubMed ID: 22589099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ
    Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Open Space Diffusive Filter for Simultaneous Species Retrieval and Separation.
    Mathur P; Fomitcheva Khartchenko A; deMello AJ; Kaigala GV
    Anal Chem; 2020 Sep; 92(17):11548-11552. PubMed ID: 32635720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophoretic motion of ideally polarizable particles in a microchannel.
    Wu Z; Gao Y; Li D
    Electrophoresis; 2009 Mar; 30(5):773-81. PubMed ID: 19197897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility.
    Basinska T; Slomkowski S; Kazmierski S; Chehimi MM
    Langmuir; 2008 Aug; 24(16):8465-72. PubMed ID: 18630979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification.
    McCarty LS; Winkleman A; Whitesides GM
    Angew Chem Int Ed Engl; 2007; 46(1-2):206-9. PubMed ID: 17136785
    [No Abstract]   [Full Text] [Related]  

  • 40. Multifunctional Polystyrene Core/Silica Shell Microparticles with Antifouling Properties for Bead-Based Multiplexed and Quantitative Analysis.
    Sarma D; Carl P; Climent E; Schneider RJ; Rurack K
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1321-1334. PubMed ID: 30507151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.