These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 19476439)
21. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Mahmud SA; Hirasawa T; Shimizu H J Biosci Bioeng; 2010 Mar; 109(3):262-6. PubMed ID: 20159575 [TBL] [Abstract][Full Text] [Related]
22. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. Matsuura K; Takagi H J Biosci Bioeng; 2005 Nov; 100(5):538-44. PubMed ID: 16384793 [TBL] [Abstract][Full Text] [Related]
23. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415 [TBL] [Abstract][Full Text] [Related]
24. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Cheng JS; Zhou X; Ding MZ; Yuan YJ Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749 [TBL] [Abstract][Full Text] [Related]
25. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Nakamura T; Takagi H; Shima J Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409 [TBL] [Abstract][Full Text] [Related]
26. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
27. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Tanaka F; Ando A; Nakamura T; Takagi H; Shima J Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074 [TBL] [Abstract][Full Text] [Related]
28. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Izawa S; Ikeda K; Maeta K; Inoue Y Appl Microbiol Biotechnol; 2004 Dec; 66(3):303-5. PubMed ID: 15278313 [TBL] [Abstract][Full Text] [Related]
29. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae]. Lv Y; Xiao D; He D; Guo X Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808 [TBL] [Abstract][Full Text] [Related]
30. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach. Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744 [TBL] [Abstract][Full Text] [Related]
31. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. Ding MZ; Tian HC; Cheng JS; Yuan YJ J Biotechnol; 2009 Dec; 144(4):279-86. PubMed ID: 19808067 [TBL] [Abstract][Full Text] [Related]
32. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Izawa S; Sato M; Yokoigawa K; Inoue Y Appl Microbiol Biotechnol; 2004 Nov; 66(1):108-14. PubMed ID: 15127164 [TBL] [Abstract][Full Text] [Related]
33. Proline as a stress protectant in the yeast Saccharomyces cerevisiae: effects of trehalose and PRO1 gene expression on stress tolerance. Kaino T; Takagi H Biosci Biotechnol Biochem; 2009 Sep; 73(9):2131-5. PubMed ID: 19734662 [TBL] [Abstract][Full Text] [Related]
34. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae. Momose Y; Matsumoto R; Maruyama A; Yamaoka M Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782 [TBL] [Abstract][Full Text] [Related]
35. The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. Verbelen PJ; Depraetere SA; Winderickx J; Delvaux FR; Delvaux F FEMS Yeast Res; 2009 Mar; 9(2):226-39. PubMed ID: 19175415 [TBL] [Abstract][Full Text] [Related]
36. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Ma M; Liu ZL Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391 [TBL] [Abstract][Full Text] [Related]
37. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715 [TBL] [Abstract][Full Text] [Related]
38. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Du X; Takagi H Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467 [TBL] [Abstract][Full Text] [Related]
39. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. Zhao XQ; Bai FW J Biotechnol; 2009 Oct; 144(1):23-30. PubMed ID: 19446584 [TBL] [Abstract][Full Text] [Related]
40. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]