BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 19476439)

  • 21. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses.
    Mahmud SA; Hirasawa T; Shimizu H
    J Biosci Bioeng; 2010 Mar; 109(3):262-6. PubMed ID: 20159575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae.
    Matsuura K; Takagi H
    J Biosci Bioeng; 2005 Nov; 100(5):538-44. PubMed ID: 16384793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.
    Nakamura T; Takagi H; Shima J
    Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
    Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology.
    Izawa S; Ikeda K; Maeta K; Inoue Y
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):303-5. PubMed ID: 15278313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae].
    Lv Y; Xiao D; He D; Guo X
    Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.
    Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F
    Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach.
    Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA
    J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ; Tian HC; Cheng JS; Yuan YJ
    J Biotechnol; 2009 Dec; 144(4):279-86. PubMed ID: 19808067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells.
    Izawa S; Sato M; Yokoigawa K; Inoue Y
    Appl Microbiol Biotechnol; 2004 Nov; 66(1):108-14. PubMed ID: 15127164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proline as a stress protectant in the yeast Saccharomyces cerevisiae: effects of trehalose and PRO1 gene expression on stress tolerance.
    Kaino T; Takagi H
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2131-5. PubMed ID: 19734662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae.
    Momose Y; Matsumoto R; Maruyama A; Yamaoka M
    Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response.
    Verbelen PJ; Depraetere SA; Winderickx J; Delvaux FR; Delvaux F
    FEMS Yeast Res; 2009 Mar; 9(2):226-39. PubMed ID: 19175415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu ZL
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.
    Zhao XQ; Bai FW
    J Biotechnol; 2009 Oct; 144(1):23-30. PubMed ID: 19446584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.