These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19476616)

  • 21. Risk of disease and willingness to vaccinate in the United States: A population-based survey.
    Baumgaertner B; Ridenhour BJ; Justwan F; Carlisle JE; Miller CR
    PLoS Med; 2020 Oct; 17(10):e1003354. PubMed ID: 33057373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination.
    Reynolds JJ; Hirsch BT; Gehrt SD; Craft ME
    J Anim Ecol; 2015 Nov; 84(6):1720-31. PubMed ID: 26172427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal Influenza Vaccination amongst Medical Students: A Social Network Analysis Based on a Cross-Sectional Study.
    Edge R; Heath J; Rowlingson B; Keegan TJ; Isba R
    PLoS One; 2015; 10(10):e0140085. PubMed ID: 26452223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erratic flu vaccination emerges from short-sighted behavior in contact networks.
    Cornforth DM; Reluga TC; Shim E; Bauch CT; Galvani AP; Meyers LA
    PLoS Comput Biol; 2011 Jan; 7(1):e1001062. PubMed ID: 21298083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study.
    Glasser JW; Feng Z; Omer SB; Smith PJ; Rodewald LE
    Lancet Infect Dis; 2016 May; 16(5):599-605. PubMed ID: 26852723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling collective effectiveness of voluntary vaccination with and without incentives.
    Rat-Aspert O; Fourichon C
    Prev Vet Med; 2010 Mar; 93(4):265-75. PubMed ID: 20022648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex social contagion makes networks more vulnerable to disease outbreaks.
    Campbell E; Salathé M
    Sci Rep; 2013; 3():1905. PubMed ID: 23712758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the Transmission of Measles and Rubella to Support Global Management Policy Analyses and Eradication Investment Cases.
    Thompson KM; Badizadegan ND
    Risk Anal; 2017 Jun; 37(6):1109-1131. PubMed ID: 28561947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions.
    Ringa N; Bauch CT
    Math Biosci Eng; 2018 Apr; 15(2):461-483. PubMed ID: 29161845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of committed individuals on vaccination behavior.
    Liu XT; Wu ZX; Zhang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051132. PubMed ID: 23214763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Logistics of community smallpox control through contact tracing and ring vaccination: a stochastic network model.
    Porco TC; Holbrook KA; Fernyak SE; Portnoy DL; Reiter R; Aragón TJ
    BMC Public Health; 2004 Aug; 4():34. PubMed ID: 15298713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epidemic spreading in multiplex networks influenced by opinion exchanges on vaccination.
    Alvarez-Zuzek LG; La Rocca CE; Iglesias JR; Braunstein LA
    PLoS One; 2017; 12(11):e0186492. PubMed ID: 29121056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of contact network structure on epidemic transmission trees: implications for data required to estimate network structure.
    Carnegie NB
    Stat Med; 2018 Jan; 37(2):236-248. PubMed ID: 28192859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local immunization program for susceptible-infected-recovered network epidemic model.
    Wu Q; Lou Y
    Chaos; 2016 Feb; 26(2):023108. PubMed ID: 26931589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid emergence of free-riding behavior in new pediatric immunization programs.
    Bauch CT; Bhattacharyya S; Ball RF
    PLoS One; 2010 Sep; 5(9):e12594. PubMed ID: 20856798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence.
    Jovanović R; Davidović M; Lazović I; Jovanović M; Jovašević-Stojanović M
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34201285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imitation dynamics predict vaccinating behaviour.
    Bauch CT
    Proc Biol Sci; 2005 Aug; 272(1573):1669-75. PubMed ID: 16087421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases.
    d'Onofrio A; Manfredi P; Salinelli E
    Theor Popul Biol; 2007 May; 71(3):301-17. PubMed ID: 17335862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California.
    Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC
    BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring Voluntary Vaccinating Behaviors using Evolutionary N-person Threshold Games.
    Shi B; Wang W; Qiu H; Chen YW; Peng S
    Sci Rep; 2017 Nov; 7(1):16355. PubMed ID: 29180687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.