BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 19477186)

  • 1. Crystal structures of catalytic intermediates of human selenophosphate synthetase 1.
    Wang KT; Wang J; Li LF; Su XD
    J Mol Biol; 2009 Jul; 390(4):747-59. PubMed ID: 19477186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution.
    Takusagawa F; Kamitori S; Markham GD
    Biochemistry; 1996 Feb; 35(8):2586-96. PubMed ID: 8611562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs.
    Itoh Y; Sekine S; Matsumoto E; Akasaka R; Takemoto C; Shirouzu M; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1456-69. PubMed ID: 18773910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights revealed through characterization of a novel chromophore in selenophosphate synthetase from Escherichia coli.
    Wolfe MD
    IUBMB Life; 2003 Dec; 55(12):689-93. PubMed ID: 14769005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of a 5,10-methenyltetrahydrofolate synthetase from Mycoplasma pneumoniae (GI: 13508087).
    Chen S; Yakunin AF; Proudfoot M; Kim R; Kim SH
    Proteins; 2005 Nov; 61(2):433-43. PubMed ID: 16104022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.
    Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J
    J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of selenophosphate.
    Lacourciere GM
    Biofactors; 1999; 10(2-3):237-44. PubMed ID: 10609888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of phosphate chain mobility of MgATP in completing the 3-phosphoglycerate kinase catalytic site: binding, kinetic, and crystallographic studies with ATP and MgATP.
    Flachner B; Kovári Z; Varga A; Gugolya Z; Vonderviszt F; Náray-Szabó G; Vas M
    Biochemistry; 2004 Mar; 43(12):3436-49. PubMed ID: 15035615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of Sa239 reveals the structural basis for the activation of ribokinase by monovalent cations.
    Li J; Wang C; Wu Y; Wu M; Wang L; Wang Y; Zang J
    J Struct Biol; 2012 Feb; 177(2):578-82. PubMed ID: 22198595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP.
    Liu J; Lou Y; Yokota H; Adams PD; Kim R; Kim SH
    J Mol Biol; 2005 Nov; 354(2):289-303. PubMed ID: 16242716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging awareness of the critical roles of S-phosphocysteine and selenophosphate in biological systems.
    Stadtman TC
    Biofactors; 1994 May; 4(3-4):181-5. PubMed ID: 7916965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of monovalent cations and divalent metal ions on Escherichia coli selenophosphate synthetase.
    Kim IY; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7326-9. PubMed ID: 8041789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of human PAPS synthetase 1 reveals asymmetry in substrate binding.
    Harjes S; Bayer P; Scheidig AJ
    J Mol Biol; 2005 Apr; 347(3):623-35. PubMed ID: 15755455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of human argininosuccinate synthetase.
    Karlberg T; Collins R; van den Berg S; Flores A; Hammarström M; Högbom M; Holmberg Schiavone L; Uppenberg J
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):279-86. PubMed ID: 18323623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea.
    Stock T; Selzer M; Rother M
    Mol Microbiol; 2010 Jan; 75(1):149-60. PubMed ID: 19919669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes.
    LaRonde-LeBlanc N; Guszczynski T; Copeland T; Wlodawer A
    FEBS J; 2005 Jun; 272(11):2800-10. PubMed ID: 15943813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase.
    Fraser ME; James MN; Bridger WA; Wolodko WT
    J Mol Biol; 2000 Jun; 299(5):1325-39. PubMed ID: 10873456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes.
    Herguedas B; Martínez-Júlvez M; Frago S; Medina M; Hermoso JA
    J Mol Biol; 2010 Jul; 400(2):218-30. PubMed ID: 20471397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis.
    Hartmann MD; Bourenkov GP; Oberschall A; Strizhov N; Bartunik HD
    J Mol Biol; 2006 Dec; 364(3):411-23. PubMed ID: 17020768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.