BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19477203)

  • 1. Brain activation patterns during classical conditioning with appetitive or aversive UCS.
    Cybulska-Klosowicz A; Zakrzewska R; Kossut M
    Behav Brain Res; 2009 Dec; 204(1):102-11. PubMed ID: 19477203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated activation of the thalamocortical network in a simple learning paradigm.
    Cybulska-Klosowicz A; Brzezicka A; Zakrzewska R; Kossut M
    Behav Brain Res; 2013 Sep; 252():293-301. PubMed ID: 23791933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early-phase of learning enhances communication between brain hemispheres.
    Cybulska-Klosowicz A; Kossut M
    Eur J Neurosci; 2006 Sep; 24(5):1470-6. PubMed ID: 16987228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical conditioning of tone-signaled bradycardia modifies 2-deoxyglucose uptake patterns in cortex, thalamus, habenula, caudate-putamen and hippocampal formation.
    Gonzalez-Lima F; Scheich H
    Brain Res; 1986 Jan; 363(2):239-56. PubMed ID: 3942896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning.
    Lanuza E; Nader K; Ledoux JE
    Neuroscience; 2004; 125(2):305-15. PubMed ID: 15062974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.
    Nasser HM; McNally GP
    Learn Mem; 2013 Mar; 20(4):220-8. PubMed ID: 23512938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of continuous versus intermittent CS-UCS pairing on human brain activation during Pavlovian fear conditioning.
    Dunsmoor JE; Bandettini PA; Knight DC
    Behav Neurosci; 2007 Aug; 121(4):635-42. PubMed ID: 17663589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine-induced changes in neural network patterns supporting aversive conditioning.
    Diaconescu AO; Menon M; Jensen J; Kapur S; McIntosh AR
    Brain Res; 2010 Feb; 1313():143-61. PubMed ID: 19961836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential involvement of the central amygdala in appetitive versus aversive learning.
    Knapska E; Walasek G; Nikolaev E; Neuhäusser-Wespy F; Lipp HP; Kaczmarek L; Werka T
    Learn Mem; 2006; 13(2):192-200. PubMed ID: 16547163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of experience-dependent cortical plasticity in aged mice.
    Liguz-Lecznar M; Siucinska E; Zakrzewska R; Kossut M
    Neurobiol Aging; 2011 Oct; 32(10):1896-905. PubMed ID: 20005597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of subjective CS/UCS association in appetitive conditioning.
    Tapia León I; Kruse O; Stalder T; Stark R; Klucken T
    Hum Brain Mapp; 2018 Apr; 39(4):1637-1646. PubMed ID: 29297960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA immunoreactivity in mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae.
    Siucinska E; Kossut M; Stewart MG
    Brain Res; 1999 Oct; 843(1-2):62-70. PubMed ID: 10528111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Appetitive conditioning with pornographic stimuli elicits stronger activation in reward regions than monetary and gaming-related stimuli.
    Krikova K; Klein S; Kampa M; Walter B; Stark R; Klucken T
    Hum Brain Mapp; 2024 Jun; 45(8):e26711. PubMed ID: 38798103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus accumbens neurons dynamically respond to appetitive and aversive associative learning.
    Deseyve C; Domingues AV; Carvalho TTA; Armada G; Correia R; Vieitas-Gaspar N; Wezik M; Pinto L; Sousa N; Coimbra B; Rodrigues AJ; Soares-Cunha C
    J Neurochem; 2024 Mar; 168(3):312-327. PubMed ID: 38317429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onset and offset of aversive events establish distinct memories requiring fear and reward networks.
    Andreatta M; Fendt M; Mühlberger A; Wieser MJ; Imobersteg S; Yarali A; Gerber B; Pauli P
    Learn Mem; 2012 Oct; 19(11):518-26. PubMed ID: 23073641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac response in aversive and appetitive olfactory conditioning: Evidence for a valence-independent CS-elicited bradycardia.
    Exner A; Tapia León I; Mueller EM; Klucken T
    Psychophysiology; 2021 Nov; 58(11):e13912. PubMed ID: 34388264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appetitive overshadowing is disrupted by systemic amphetamine but not by electrolytic lesions to the nucleus accumbens shell.
    Horsley RR; Moran PM; Cassaday HJ
    J Psychopharmacol; 2008 Mar; 22(2):172-81. PubMed ID: 18208926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolytic lesions to nucleus accumbens core and shell have dissociable effects on conditioning to discrete and contextual cues in aversive and appetitive procedures respectively.
    Cassaday HJ; Horsley RR; Norman C
    Behav Brain Res; 2005 May; 160(2):222-35. PubMed ID: 15863219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm.
    Klucken T; Kagerer S; Schweckendiek J; Tabbert K; Vaitl D; Stark R
    Neuroscience; 2009 Jan; 158(2):721-31. PubMed ID: 18976695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience-dependent changes in cortical whisker representation in the adult mouse: a 2-deoxyglucose study.
    Siucinska E; Kossut M
    Neuroscience; 2004; 127(4):961-71. PubMed ID: 15312908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.