BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19477449)

  • 1. Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis.
    Hu M; Wang J; Zhao H; Dong S; Cai J
    J Biomech; 2009 Jul; 42(10):1513-1519. PubMed ID: 19477449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes.
    Francius G; Tesson B; Dague E; Martin-Jézéquel V; Dufrêne YF
    Environ Microbiol; 2008 May; 10(5):1344-56. PubMed ID: 18248452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Morphology and mechanical properties of normal lymphocyte and Jurkat revealed by atomic force microscopy].
    Cai X; Cai J; Dong S; Deng H; Hu M
    Sheng Wu Gong Cheng Xue Bao; 2009 Jul; 25(7):1107-12. PubMed ID: 19835156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.
    Mi Li ; Lianqing Liu ; Xiubin Xiao ; Ning Xi ; Yuechao Wang
    IEEE Trans Nanobioscience; 2016 Jul; 15(5):398-411. PubMed ID: 28113818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties study of SW480 cells based on AFM.
    Liu X; Song Z; Qu Y; Wang G; Wang Z
    Cell Biol Int; 2015 Aug; 39(8):972-7. PubMed ID: 25881744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
    Kilpatrick JI; Revenko I; Rodriguez BJ
    Adv Healthc Mater; 2015 Nov; 4(16):2456-74. PubMed ID: 26200464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Mechanical and Adhesive Properties of Single Cells Using an Atomic Force Microscope.
    Hohmann T; Dehghani F
    Methods Mol Biol; 2021; 2294():81-92. PubMed ID: 33742395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of Young's modulus value by means of AFM.
    Roa JJ; Oncins G; Diaz J; Sanz F; Segarra M
    Recent Pat Nanotechnol; 2011 Jan; 5(1):27-36. PubMed ID: 21235441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of Alzheimer's disease by a combination of electrostatic force and mechanical measurement.
    Zhao W; Cui W; Xu S; Cheong LZ; Shen C
    J Microsc; 2019 Jul; 275(1):66-72. PubMed ID: 31038737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation.
    Zhu J; Sabharwal T; Kalyanasundaram A; Guo L; Wang G
    J Biomech; 2009 Sep; 42(13):2143-50. PubMed ID: 19640539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Nano-Surface of Collagenous and Other Fibrotic Tissues with AFM.
    Stylianou A; Gkretsi V; Patrickios CS; Stylianopoulos T
    Methods Mol Biol; 2017; 1627():453-489. PubMed ID: 28836219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
    Hu K; Zhao F; Wang Q
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1319-23. PubMed ID: 24044923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.
    Choi H; Choi EH; Kim KS
    Microsc Res Tech; 2017 Oct; 80(10):1078-1084. PubMed ID: 28640537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.
    Chiou YW; Lin HK; Tang MJ; Lin HH; Yeh ML
    PLoS One; 2013; 8(10):e77384. PubMed ID: 24194882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-mechanical methods in biochemistry using atomic force microscopy.
    Ikai A; Afrin R; Sekiguchi H; Okajima T; Alam MT; Nishida S
    Curr Protein Pept Sci; 2003 Jun; 4(3):181-93. PubMed ID: 12769717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal stromal elasticity and viscoelasticity assessed by atomic force microscopy after different cross linking protocols.
    Dias J; Diakonis VF; Lorenzo M; Gonzalez F; Porras K; Douglas S; Avila M; Yoo SH; Ziebarth NM
    Exp Eye Res; 2015 Sep; 138():1-5. PubMed ID: 26093276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropipette force probe to quantify single-cell force generation: application to T-cell activation.
    Sawicka A; Babataheri A; Dogniaux S; Barakat AI; Gonzalez-Rodriguez D; Hivroz C; Husson J
    Mol Biol Cell; 2017 Nov; 28(23):3229-3239. PubMed ID: 28931600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical probing of microbubbles using the atomic force microscope.
    Sboros V; Glynos E; Pye SD; Moran CM; Butler M; Ross JA; McDicken WN; Koutsos V
    Ultrasonics; 2007 Nov; 46(4):349-54. PubMed ID: 17720211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+ T cell membrane.
    Hu M; Chen J; Wang J; Wang X; Ma S; Cai J; Chen CY; Chen ZW
    J Mol Recognit; 2009; 22(6):516-20. PubMed ID: 19670272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.