These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19477482)

  • 1. A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles.
    Manciulea A; Baker A; Lead JR
    Chemosphere; 2009 Aug; 76(8):1023-7. PubMed ID: 19477482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence characterization of the interaction Suwannee river fulvic acid with the herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) in the absence and presence of aluminum or erbium.
    Elkins KM; Dickerson MA; Traudt EM
    J Inorg Biochem; 2011 Nov; 105(11):1469-76. PubMed ID: 21983257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical property of iron binding to Suwannee River fulvic acid.
    Yan M; Li M; Wang D; Xiao F
    Chemosphere; 2013 May; 91(7):1042-8. PubMed ID: 23499223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of silver nanoparticles with Pseudomonas putida biofilms.
    Fabrega J; Renshaw JC; Lead JR
    Environ Sci Technol; 2009 Dec; 43(23):9004-9. PubMed ID: 19943680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III).
    Li S; Sun W
    J Hazard Mater; 2011 Dec; 197():70-9. PubMed ID: 22001572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.
    Gadad P; Nanny MA
    Water Res; 2008 Dec; 42(19):4818-26. PubMed ID: 18849058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: comparison of data interpretation based on NICA-Donnan and Stockholm humic models.
    Yan M; Benedetti MF; Korshin GV
    Water Res; 2013 Sep; 47(14):5439-46. PubMed ID: 23850210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence characterization of the interaction of Al3+ and Pd2+ with Suwannee River fulvic acid in the absence and presence of the herbicide 2,4-dichlorophenoxyacetic acid.
    Larrivee EM; Elkins KM; Andrews SE; Nelson DJ
    J Inorg Biochem; 2003 Sep; 97(1):32-45. PubMed ID: 14507458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter.
    Baalousha M
    Sci Total Environ; 2009 Mar; 407(6):2093-101. PubMed ID: 19059631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.
    Nason JA; McDowell SA; Callahan TW
    J Environ Monit; 2012 Jul; 14(7):1885-92. PubMed ID: 22495395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions.
    Yan M; Dryer D; Korshin GV; Benedetti MF
    Water Res; 2013 Feb; 47(2):588-96. PubMed ID: 23174533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe
    Emerson HP; Hickok KA; Powell BA
    J Environ Radioact; 2016 Dec; 165():168-181. PubMed ID: 27723529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition.
    Zhao J; Nelson DJ
    J Inorg Biochem; 2005 Feb; 99(2):383-96. PubMed ID: 15621270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.
    Gadad P; Lei H; Nanny MA
    Water Res; 2007 Nov; 41(19):4488-96. PubMed ID: 17632208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection.
    Celiz MD; Colón LA; Watson DF; Aga DS
    Environ Sci Technol; 2011 Apr; 45(7):2917-24. PubMed ID: 21381674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter.
    Bligh MW; Waite TD
    Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of Cu(II) reduction by natural organic matter.
    Pham AN; Rose AL; Waite TD
    J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin.
    Zargar B; Parham H; Hatamie A
    Talanta; 2009 Feb; 77(4):1328-31. PubMed ID: 19084644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.