BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 19477521)

  • 21. 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil.
    Brown SA; McKelvie JR; Simpson AJ; Simpson MJ
    Environ Pollut; 2010 Jun; 158(6):2117-23. PubMed ID: 20338676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioavailability of copper and zinc in mining soils.
    Smith BA; Greenberg B; Stephenson GL
    Arch Environ Contam Toxicol; 2012 Jan; 62(1):1-12. PubMed ID: 21594672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications.
    Guan TX; He HB; Zhang XD; Bai Z
    Chemosphere; 2011 Jan; 82(2):215-22. PubMed ID: 21040942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aging effect on the mobility and bioavailability of copper in soil.
    Lu A; Zhang S; Qin X; Wu W; Liu H
    J Environ Sci (China); 2009; 21(2):173-8. PubMed ID: 19402418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geochemical fractions of copper in soil chronosequences of selected European floodplains.
    Graf M; Lair GJ; Zehetner F; Gerzabek MH
    Environ Pollut; 2007 Aug; 148(3):788-96. PubMed ID: 17383781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils.
    Van Zwieten L; Rust J; Kingston T; Merrington G; Morris S
    Sci Total Environ; 2004 Aug; 329(1-3):29-41. PubMed ID: 15262156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species.
    Lukkari T; Haimi J
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):35-41. PubMed ID: 15978289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of chemical and toxicological tools to assess the bioavailability of copper derived from different copper-based fungicides in soil.
    Wang QY; Sun JY; Xu XJ; Yu HW
    Ecotoxicol Environ Saf; 2018 Oct; 161():662-668. PubMed ID: 29935430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants.
    Albarracín VH; Amoroso MJ; Abate CM
    Chemosphere; 2010 Mar; 79(2):131-7. PubMed ID: 20163821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei.
    Díez-Ortiz M; Giska I; Groot M; Borgman EM; Van Gestel CA
    Chemosphere; 2010 Aug; 80(9):1036-43. PubMed ID: 20674662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality.
    Eijsackers H; Beneke P; Maboeta M; Louw JP; Reinecke AJ
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):99-111. PubMed ID: 15978295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of pH on Cu accumulation kinetics in earthworm cytosol.
    Vijver MG; Koster M; Peijnenburg WJ
    Environ Sci Technol; 2007 Apr; 41(7):2255-60. PubMed ID: 17438772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.
    Lin D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethyl lactate enhances ethylenediaminedisuccinic acid solution removal of copper from contaminated soils.
    Guo H; Wang W; Sun Y; Li H; Ai F; Xie L; Wang X
    J Hazard Mater; 2010 Feb; 174(1-3):59-63. PubMed ID: 19783092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Total copper content and its distribution in acid vineyards soils developed from granitic rocks.
    Nóvoa-Muñoz JC; Queijeiro JM; Blanco-Ward D; Alvarez-Olleros C; Martínez-Cortizas A; García-Rodeja E
    Sci Total Environ; 2007 May; 378(1-2):23-7. PubMed ID: 17287013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms.
    Jager T; van der Wal L; Fleuren RH; Barendregt A; Hermens JL
    Environ Sci Technol; 2005 Jan; 39(1):293-8. PubMed ID: 15667108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability.
    Sizmur T; Tilston EL; Charnock J; Palumbo-Roe B; Watts MJ; Hodson ME
    J Environ Monit; 2011 Feb; 13(2):266-73. PubMed ID: 21161093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy).
    Nannoni F; Protano G
    Sci Total Environ; 2016 Oct; 568():1-10. PubMed ID: 27281550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of earthworm Lampito mauritii (Kinberg) in amending lead and zinc treated soil.
    Maity S; Padhy PK; Chaudhury S
    Bioresour Technol; 2008 Oct; 99(15):7291-8. PubMed ID: 18331791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Study of the effect of earthworm Lumbricus terrestris on the speciation of heavy metals in soils].
    El Gharmali A; Rada A; El Meray M; Nejmeddine A
    Environ Technol; 2002 Jul; 23(7):775-80. PubMed ID: 12166420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.