These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19478003)

  • 1. Model-based clustering of array CGH data.
    Shah SP; Cheung KJ; Johnson NA; Alain G; Gascoyne RD; Horsman DE; Ng RT; Murphy KP
    Bioinformatics; 2009 Jun; 25(12):i30-8. PubMed ID: 19478003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling recurrent DNA copy number alterations in array CGH data.
    Shah SP; Lam WL; Ng RT; Murphy KP
    Bioinformatics; 2007 Jul; 23(13):i450-8. PubMed ID: 17646330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of genomic copy number alterations of malignant lymphomas and its application for diagnosis].
    Tagawa H
    Gan To Kagaku Ryoho; 2007 Jul; 34(7):975-82. PubMed ID: 17637530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating copy number polymorphisms into array CGH analysis using a robust HMM.
    Shah SP; Xuan X; DeLeeuw RJ; Khojasteh M; Lam WL; Ng R; Murphy KP
    Bioinformatics; 2006 Jul; 22(14):e431-9. PubMed ID: 16873504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothing waves in array CGH tumor profiles.
    van de Wiel MA; Brosens R; Eilers PH; Kumps C; Meijer GA; Menten B; Sistermans E; Speleman F; Timmerman ME; Ylstra B
    Bioinformatics; 2009 May; 25(9):1099-104. PubMed ID: 19276148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A very fast and accurate method for calling aberrations in array-CGH data.
    Benelli M; Marseglia G; Nannetti G; Paravidino R; Zara F; Bricarelli FD; Torricelli F; Magi A
    Biostatistics; 2010 Jul; 11(3):515-8. PubMed ID: 20207682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CGHnormaliter: a Bioconductor package for normalization of array CGH data with many CNAs.
    van Houte BP; Binsl TW; Hettling H; Heringa J
    Bioinformatics; 2010 May; 26(10):1366-7. PubMed ID: 20418341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate confidence aware clustering of array CGH tumor profiles.
    van Houte BP; Heringa J
    Bioinformatics; 2010 Jan; 26(1):6-14. PubMed ID: 19846437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hidden Markov model-based algorithm for identifying tumour subtype using array CGH data.
    Zhang K; Yang Y; Devanarayan V; Xie L; Deng Y; Donald S
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S10. PubMed ID: 22369459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A segmentation/clustering model for the analysis of array CGH data.
    Picard F; Robin S; Lebarbier E; Daudin JJ
    Biometrics; 2007 Sep; 63(3):758-66. PubMed ID: 17825008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probe-density-based analysis method for array CGH data: simulation, normalization and centralization.
    Chen HI; Hsu FH; Jiang Y; Tsai MH; Yang PC; Meltzer PS; Chuang EY; Chen Y
    Bioinformatics; 2008 Aug; 24(16):1749-56. PubMed ID: 18603568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability-based comparison of class discovery methods for DNA copy number profiles.
    Brito I; Hupé P; Neuvial P; Barillot E
    PLoS One; 2013; 8(12):e81458. PubMed ID: 24339933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial clustering of array CGH features in combination with hierarchical multiple testing.
    Kim KI; Roquain E; van de Wiel MA
    Stat Appl Genet Mol Biol; 2010; 9():Article40. PubMed ID: 21126231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CGHnormaliter: an iterative strategy to enhance normalization of array CGH data with imbalanced aberrations.
    van Houte BP; Binsl TW; Hettling H; Pirovano W; Heringa J
    BMC Genomics; 2009 Aug; 10():401. PubMed ID: 19709427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust unmixing of tumor states in array comparative genomic hybridization data.
    Tolliver D; Tsourakakis C; Subramanian A; Shackney S; Schwartz R
    Bioinformatics; 2010 Jun; 26(12):i106-14. PubMed ID: 20529894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. densityCut: an efficient and versatile topological approach for automatic clustering of biological data.
    Ding J; Shah S; Condon A
    Bioinformatics; 2016 Sep; 32(17):2567-76. PubMed ID: 27153661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of copy number gains and losses, detected by array-based comparative genomic hybridization, for computational differential diagnosis of B-cell lymphomas and genetic regions involved in lymphomagenesis.
    Takeuchi I; Tagawa H; Tsujikawa A; Nakagawa M; Katayama-Suguro M; Guo Y; Seto M
    Haematologica; 2009 Jan; 94(1):61-9. PubMed ID: 19029149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distance-based clustering of CGH data.
    Liu J; Mohammed J; Carter J; Ranka S; Kahveci T; Baudis M
    Bioinformatics; 2006 Aug; 22(16):1971-8. PubMed ID: 16705014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSMAD: a computationally efficient method for the analysis of noisy array CGH data.
    Budinska E; Gelnarova E; Schimek MG
    Bioinformatics; 2009 Mar; 25(6):703-13. PubMed ID: 19147666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression analysis provides a potential rationale for revising the histological grading of follicular lymphomas.
    Piccaluga PP; Califano A; Klein U; Agostinelli C; Bellosillo B; Gimeno E; Serrano S; Solè F; Zang Y; Falini B; Zinzani PL; Pileri SA
    Haematologica; 2008 Jul; 93(7):1033-8. PubMed ID: 18492688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.