These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19478072)

  • 1. Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography.
    Wimmer MA; Lochnit G; Bassil E; Mühling KH; Goldbach HE
    Plant Cell Physiol; 2009 Jul; 50(7):1292-304. PubMed ID: 19478072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.).
    Hochholdinger F; Woll K; Guo L; Schnable PS
    Proteomics; 2005 Dec; 5(18):4885-93. PubMed ID: 16247731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation.
    Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F
    Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+.
    Roth U; von Roepenack-Lahaye E; Clemens S
    J Exp Bot; 2006; 57(15):4003-13. PubMed ID: 17075075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach.
    Kwon SJ; Choi EY; Seo JB; Park OK
    Mol Cells; 2007 Oct; 24(2):268-75. PubMed ID: 17978581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity.
    Requejo R; Tena M
    Phytochemistry; 2005 Jul; 66(13):1519-28. PubMed ID: 15964037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2alpha.
    Stemmer C; Leeming DJ; Franssen L; Grimm R; Grasser KD
    Biochemistry; 2003 Apr; 42(12):3503-8. PubMed ID: 12653554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of synaptic plasma membrane proteins co-precipitated with fibrillar beta-amyloid peptide.
    Verdier Y; Huszár E; Penke B; Penke Z; Woffendin G; Scigelova M; Fülöp L; Szucs M; Medzihradszky K; Janáky T
    J Neurochem; 2005 Aug; 94(3):617-28. PubMed ID: 16001971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots.
    Requejo R; Tena M
    Proteomics; 2006 Apr; 6 Suppl 1():S156-62. PubMed ID: 16534746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteomic analysis of 14-3-3 binding proteins from developing barley grains.
    Alexander RD; Morris PC
    Proteomics; 2006 Mar; 6(6):1886-96. PubMed ID: 16470656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteins analysis in plants: a proteomic approach.
    Laugesen S; Messinese E; Hem S; Pichereaux C; Grat S; Ranjeva R; Rossignol M; Bono JJ
    Phytochemistry; 2006 Oct; 67(20):2208-14. PubMed ID: 16962150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reference map of the Arabidopsis thaliana mature pollen proteome.
    Noir S; Bräutigam A; Colby T; Schmidt J; Panstruga R
    Biochem Biophys Res Commun; 2005 Dec; 337(4):1257-66. PubMed ID: 16242667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of 2-D gels to identify novel protein-protein interactions in the cochlea.
    Kathiresan T; Harvey MC; Sokolowski BH
    Methods Mol Biol; 2009; 493():269-86. PubMed ID: 18839353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics of mitochondrial inner and outer membranes.
    Distler AM; Kerner J; Hoppel CL
    Proteomics; 2008 Oct; 8(19):4066-82. PubMed ID: 18763707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2-D liquid-phase chromatography for proteomic analysis in plant tissues.
    Pirondini A; Visioli G; Malcevschi A; Marmiroli N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):91-100. PubMed ID: 16513437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation.
    Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F
    Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and proteomic analysis of plant plasma membranes.
    Alexandersson E; Gustavsson N; Bernfur K; Karlsson A; Kjellbom P; Larsson C
    Methods Mol Biol; 2008; 432():161-73. PubMed ID: 18370017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures.
    Chivasa S; Hamilton JM; Pringle RS; Ndimba BK; Simon WJ; Lindsey K; Slabas AR
    J Exp Bot; 2006; 57(7):1553-62. PubMed ID: 16547123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.