These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19478082)
1. Multiple conformers in active site of human dihydrofolate reductase F31R/Q35E double mutant suggest structural basis for methotrexate resistance. Volpato JP; Yachnin BJ; Blanchet J; Guerrero V; Poulin L; Fossati E; Berghuis AM; Pelletier JN J Biol Chem; 2009 Jul; 284(30):20079-89. PubMed ID: 19478082 [TBL] [Abstract][Full Text] [Related]
2. In Silico Study Identified Methotrexate Analog as Potential Inhibitor of Drug Resistant Human Dihydrofolate Reductase for Cancer Therapeutics. Rana RM; Rampogu S; Abid NB; Zeb A; Parate S; Lee G; Yoon S; Kim Y; Kim D; Lee KW Molecules; 2020 Jul; 25(15):. PubMed ID: 32752079 [TBL] [Abstract][Full Text] [Related]
3. Selectively weakened binding of methotrexate by human dihydrofolate reductase allows rapid ex vivo selection of mammalian cells. Volpato JP; Mayotte N; Fossati E; Guerrero V; Sauvageau G; Pelletier JN J Mol Recognit; 2011; 24(2):188-98. PubMed ID: 21360609 [TBL] [Abstract][Full Text] [Related]
4. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Cody V; Luft JR; Pangborn W Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):147-55. PubMed ID: 15681865 [TBL] [Abstract][Full Text] [Related]
5. Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase. Volpato JP; Fossati E; Pelletier JN J Mol Biol; 2007 Oct; 373(3):599-611. PubMed ID: 17868689 [TBL] [Abstract][Full Text] [Related]
6. Comparison of ternary crystal complexes of F31 variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine. Cody V; Galitsky N; Luft JR; Pangborn W; Blakley RL; Gangjee A Anticancer Drug Des; 1998 Jun; 13(4):307-15. PubMed ID: 9627670 [TBL] [Abstract][Full Text] [Related]
7. Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim. Thillet J; Absil J; Stone SR; Pictet R J Biol Chem; 1988 Sep; 263(25):12500-8. PubMed ID: 3045118 [TBL] [Abstract][Full Text] [Related]
8. Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes. Cody V; Pace J; Makin J; Piraino J; Queener SF; Rosowsky A Biochemistry; 2009 Mar; 48(8):1702-11. PubMed ID: 19196009 [TBL] [Abstract][Full Text] [Related]
9. Role of the active-site carboxylate in dihydrofolate reductase: kinetic and spectroscopic studies of the aspartate 26-->asparagine mutant of the Lactobacillus casei enzyme. Basran J; Casarotto MG; Barsukov IL; Roberts GC Biochemistry; 1995 Mar; 34(9):2872-82. PubMed ID: 7893701 [TBL] [Abstract][Full Text] [Related]
10. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. Lewis WS; Cody V; Galitsky N; Luft JR; Pangborn W; Chunduru SK; Spencer HT; Appleman JR; Blakley RL J Biol Chem; 1995 Mar; 270(10):5057-64. PubMed ID: 7890613 [TBL] [Abstract][Full Text] [Related]
11. Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis. Nakano T; Spencer HT; Appleman JR; Blakley RL Biochemistry; 1994 Aug; 33(33):9945-52. PubMed ID: 8061003 [TBL] [Abstract][Full Text] [Related]
12. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase. Huang Z; Wagner CR; Benkovic SJ Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371 [TBL] [Abstract][Full Text] [Related]
13. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids. Zheng S; Kwon I Biotechnol Bioeng; 2013 Sep; 110(9):2361-70. PubMed ID: 23568807 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and structural analysis for potent antifolate inhibition of Pneumocystis jirovecii, Pneumocystis carinii, and human dihydrofolate reductases and their active-site variants. Cody V; Pace J; Queener SF; Adair OO; Gangjee A Antimicrob Agents Chemother; 2013 Jun; 57(6):2669-77. PubMed ID: 23545530 [TBL] [Abstract][Full Text] [Related]
15. Kinetic investigation of methotrexate resistant human dihydrofolate reductase (hDHFR) mutants at Phe31. Chunduru SK; Appleman JR; Blakley RL Adv Exp Med Biol; 1993; 338():507-10. PubMed ID: 8304168 [No Abstract] [Full Text] [Related]
17. Comparison of two independent crystal structures of human dihydrofolate reductase ternary complexes reduced with nicotinamide adenine dinucleotide phosphate and the very tight-binding inhibitor PT523. Cody V; Galitsky N; Luft JR; Pangborn W; Rosowsky A; Blakley RL Biochemistry; 1997 Nov; 36(45):13897-903. PubMed ID: 9374868 [TBL] [Abstract][Full Text] [Related]
18. The importance of loop region residues 40-46 in human dihydrofolate reductase as revealed by site-directed mutagenesis. Tan XH; Huang SM; Ratnam M; Thompson PD; Freisheim JH J Biol Chem; 1990 May; 265(14):8027-32. PubMed ID: 2186034 [TBL] [Abstract][Full Text] [Related]
19. Conversion of arginine to lysine at position 70 of human dihydrofolate reductase: generation of a methotrexate-insensitive mutant enzyme. Thompson PD; Freisheim JH Biochemistry; 1991 Aug; 30(33):8124-30. PubMed ID: 1907850 [TBL] [Abstract][Full Text] [Related]
20. FlexE: efficient molecular docking considering protein structure variations. Claussen H; Buning C; Rarey M; Lengauer T J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]