BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19478083)

  • 1. Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase.
    Belyi Y; Stahl M; Sovkova I; Kaden P; Luy B; Aktories K
    J Biol Chem; 2009 Jul; 284(30):20167-74. PubMed ID: 19478083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongation factor 1A is the target of growth inhibition in yeast caused by Legionella pneumophila glucosyltransferase Lgt1.
    Belyi Y; Tartakovskaya D; Tais A; Fitzke E; Tzivelekidis T; Jank T; Rospert S; Aktories K
    J Biol Chem; 2012 Jul; 287(31):26029-37. PubMed ID: 22685293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and Analysis of Effector Glucosyltransferase Lgt1 from Legionella pneumophila.
    Levanova N; Tabakova I; Jank T; Belyi Y
    Methods Mol Biol; 2019; 1921():277-287. PubMed ID: 30694499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases.
    Tzivelekidis T; Jank T; Pohl C; Schlosser A; Rospert S; Knudsen CR; Rodnina MV; Belyi Y; Aktories K
    PLoS One; 2011; 6(12):e29525. PubMed ID: 22216304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila.
    Belyi Y; Tabakova I; Stahl M; Aktories K
    J Bacteriol; 2008 Apr; 190(8):3026-35. PubMed ID: 18281405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A.
    Belyi Y; Niggeweg R; Opitz B; Vogelsgesang M; Hippenstiel S; Wilm M; Aktories K
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16953-8. PubMed ID: 17068130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxic glucosyltransferases of Legionella pneumophila.
    Belyi Y; Jank T; Aktories K
    Curr Top Microbiol Immunol; 2013; 376():211-26. PubMed ID: 23900830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila.
    Lü W; Du J; Stahl M; Tzivelekidis T; Belyi Y; Gerhardt S; Aktories K; Einsle O
    J Mol Biol; 2010 Feb; 396(2):321-31. PubMed ID: 19941871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A.
    Jank T; Belyi Y; Wirth C; Rospert S; Hu Z; Dengjel J; Tzivelekidis T; Andersen GR; Hunte C; Schlosser A; Aktories K
    J Biol Chem; 2017 Sep; 292(39):16014-16023. PubMed ID: 28801462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase.
    Hurtado-Guerrero R; Zusman T; Pathak S; Ibrahim AF; Shepherd S; Prescott A; Segal G; van Aalten DM
    Biochem J; 2010 Feb; 426(3):281-92. PubMed ID: 20030628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA.
    Levanova N; Steinemann M; Böhmer KE; Schneider S; Belyi Y; Schlosser A; Aktories K; Jank T
    Naunyn Schmiedebergs Arch Pharmacol; 2019 Jan; 392(1):69-79. PubMed ID: 30225797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A.
    Anand M; Balar B; Ulloque R; Gross SR; Kinzy TG
    J Biol Chem; 2006 Oct; 281(43):32318-26. PubMed ID: 16954224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila.
    Belyi I; Popoff MR; Cianciotto NP
    Infect Immun; 2003 Jan; 71(1):181-6. PubMed ID: 12496164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling.
    Bodman JAR; Yang Y; Logan MR; Eitzen G
    J Biol Chem; 2015 Feb; 290(8):4705-4716. PubMed ID: 25561732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial toxin and effector glycosyltransferases.
    Belyi Y; Aktories K
    Biochim Biophys Acta; 2010 Feb; 1800(2):134-43. PubMed ID: 19647041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity.
    Visweswaraiah J; Lageix S; Castilho BA; Izotova L; Kinzy TG; Hinnebusch AG; Sattlegger E
    J Biol Chem; 2011 Oct; 286(42):36568-79. PubMed ID: 21849502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain II of the translation elongation factor eEF1A is required for Gcn2 kinase inhibition.
    Ramesh R; Sattlegger E
    FEBS Lett; 2020 Jul; 594(14):2266-2281. PubMed ID: 32359173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis reveals potential phosphorylation sites in eukaryotic elongation factor 1A that are important for its activity.
    Mateyak MK; He D; Sharma P; Kinzy TG
    FEBS Lett; 2021 Sep; 595(17):2208-2220. PubMed ID: 34293820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylation of elongation factor 1A by yeast Efm4 or human eEF1A-KMT2 involves a beta-hairpin recognition motif and crosstalks with phosphorylation.
    Hamey JJ; Nguyen A; Haddad M; Vázquez-Campos X; Pfeiffer PG; Wilkins MR
    J Biol Chem; 2024 Feb; 300(2):105639. PubMed ID: 38199565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human.
    Hamey JJ; Winter DL; Yagoub D; Overall CM; Hart-Smith G; Wilkins MR
    Mol Cell Proteomics; 2016 Jan; 15(1):164-76. PubMed ID: 26545399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.