BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19478803)

  • 1. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA.
    Liang B; Zhou J; Kahen E; Terns RM; Terns MP; Li H
    Nat Struct Mol Biol; 2009 Jul; 16(7):740-6. PubMed ID: 19478803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and structural impact of target uridine substitutions on the H/ACA ribonucleoprotein particle pseudouridine synthase.
    Zhou J; Liang B; Li H
    Biochemistry; 2010 Jul; 49(29):6276-81. PubMed ID: 20575532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.
    Wang P; Yang L; Gao YQ; Zhao XS
    Nucleic Acids Res; 2015 Sep; 43(15):7207-16. PubMed ID: 26206671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase.
    Duan J; Li L; Lu J; Wang W; Ye K
    Mol Cell; 2009 May; 34(4):427-39. PubMed ID: 19481523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of an H/ACA box ribonucleoprotein particle.
    Li L; Ye K
    Nature; 2006 Sep; 443(7109):302-7. PubMed ID: 16943774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal proteins Nop10 and Gar1 increase the catalytic activity of Cbf5 in pseudouridylating tRNA.
    Kamalampeta R; Kothe U
    Sci Rep; 2012; 2():663. PubMed ID: 22993689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita.
    Rashid R; Liang B; Baker DL; Youssef OA; He Y; Phipps K; Terns RM; Terns MP; Li H
    Mol Cell; 2006 Jan; 21(2):249-60. PubMed ID: 16427014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein.
    Fujikane R; Behm-Ansmant I; Tillault AS; Loegler C; Igel-Bourguignon V; Marguet E; Forterre P; Branlant C; Motorin Y; Charpentier B
    Sci Rep; 2018 Sep; 8(1):13815. PubMed ID: 30218085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex.
    Liang B; Xue S; Terns RM; Terns MP; Li H
    Nat Struct Mol Biol; 2007 Dec; 14(12):1189-95. PubMed ID: 18059286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide.
    Zhou J; Liang B; Li H
    RNA; 2011 Feb; 17(2):244-50. PubMed ID: 21149572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase.
    Li S; Duan J; Li D; Yang B; Dong M; Ye K
    Genes Dev; 2011 Nov; 25(22):2409-21. PubMed ID: 22085967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and thermodynamic characterization of the reaction pathway of box H/ACA RNA-guided pseudouridine formation.
    Yang X; Duan J; Li S; Wang P; Ma S; Ye K; Zhao XS
    Nucleic Acids Res; 2012 Nov; 40(21):10925-36. PubMed ID: 23012266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP.
    Baker DL; Youssef OA; Chastkofsky MI; Dy DA; Terns RM; Terns MP
    Genes Dev; 2005 May; 19(10):1238-48. PubMed ID: 15870259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP.
    Youssef OA; Terns RM; Terns MP
    Nucleic Acids Res; 2007; 35(18):6196-206. PubMed ID: 17855403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation.
    Majumder M; Bosmeny MS; Gupta R
    RNA; 2016 Oct; 22(10):1604-19. PubMed ID: 27539785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Ψ-synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature.
    Tillault AS; Fourmann JB; Loegler C; Blaud M; Branlant C; Charpentier B
    Biochimie; 2015 Jun; 113():134-42. PubMed ID: 25896443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity.
    Manival X; Charron C; Fourmann JB; Godard F; Charpentier B; Branlant C
    Nucleic Acids Res; 2006; 34(3):826-39. PubMed ID: 16456033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.
    Fourmann JB; Tillault AS; Blaud M; Leclerc F; Branlant C; Charpentier B
    PLoS One; 2013; 8(7):e70313. PubMed ID: 23922977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential roles of archaeal box H/ACA proteins in guide RNA-dependent and independent pseudouridine formation.
    Gurha P; Joardar A; Chaurasia P; Gupta R
    RNA Biol; 2007 Oct; 4(2):101-9. PubMed ID: 17993784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nop10 is a conserved H/ACA snoRNP molecular adaptor.
    Reichow SL; Varani G
    Biochemistry; 2008 Jun; 47(23):6148-56. PubMed ID: 18473479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.