These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1676 related articles for article (PubMed ID: 19478820)
1. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Trachootham D; Alexandre J; Huang P Nat Rev Drug Discov; 2009 Jul; 8(7):579-91. PubMed ID: 19478820 [TBL] [Abstract][Full Text] [Related]
2. Redox-active and redox-silent compounds: synergistic therapeutics in cancer. Tomasetti M; Santarelli L; Alleva R; Dong LF; Neuzil J Curr Med Chem; 2015; 22(5):552-68. PubMed ID: 25245377 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial ROS and cancer drug resistance: Implications for therapy. Okon IS; Zou MH Pharmacol Res; 2015 Oct; 100():170-4. PubMed ID: 26276086 [TBL] [Abstract][Full Text] [Related]
4. Targeting antioxidant enzymes as a radiosensitizing strategy. Jiang H; Wang H; De Ridder M Cancer Lett; 2018 Dec; 438():154-164. PubMed ID: 30223069 [TBL] [Abstract][Full Text] [Related]
5. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Nagano O; Okazaki S; Saya H Oncogene; 2013 Oct; 32(44):5191-8. PubMed ID: 23334333 [TBL] [Abstract][Full Text] [Related]
6. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. Farhood B; Najafi M; Salehi E; Hashemi Goradel N; Nashtaei MS; Khanlarkhani N; Mortezaee K J Cell Biochem; 2019 Jan; 120(1):71-76. PubMed ID: 30203529 [TBL] [Abstract][Full Text] [Related]
7. Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling. Luo M; Shang L; Brooks MD; Jiagge E; Zhu Y; Buschhaus JM; Conley S; Fath MA; Davis A; Gheordunescu E; Wang Y; Harouaka R; Lozier A; Triner D; McDermott S; Merajver SD; Luker GD; Spitz DR; Wicha MS Cell Metab; 2018 Jul; 28(1):69-86.e6. PubMed ID: 29972798 [TBL] [Abstract][Full Text] [Related]
8. Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications. Ju HQ; Lu YX; Chen DL; Tian T; Mo HY; Wei XL; Liao JW; Wang F; Zeng ZL; Pelicano H; Aguilar M; Jia WH; Xu RH Theranostics; 2016; 6(8):1160-75. PubMed ID: 27279909 [TBL] [Abstract][Full Text] [Related]
9. Targeting ROS in cancer: rationale and strategies. Glorieux C; Liu S; Trachootham D; Huang P Nat Rev Drug Discov; 2024 Aug; 23(8):583-606. PubMed ID: 38982305 [TBL] [Abstract][Full Text] [Related]
10. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer. Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204 [TBL] [Abstract][Full Text] [Related]
11. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Wang C; Shao L; Pan C; Ye J; Ding Z; Wu J; Du Q; Ren Y; Zhu C Stem Cell Res Ther; 2019 Jun; 10(1):175. PubMed ID: 31196164 [TBL] [Abstract][Full Text] [Related]
12. The differential role of reactive oxygen species in early and late stages of cancer. Assi M Am J Physiol Regul Integr Comp Physiol; 2017 Dec; 313(6):R646-R653. PubMed ID: 28835450 [TBL] [Abstract][Full Text] [Related]
13. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. Dharmaraja AT J Med Chem; 2017 Apr; 60(8):3221-3240. PubMed ID: 28135088 [TBL] [Abstract][Full Text] [Related]
14. Modulating ROS to overcome multidrug resistance in cancer. Cui Q; Wang JQ; Assaraf YG; Ren L; Gupta P; Wei L; Ashby CR; Yang DH; Chen ZS Drug Resist Updat; 2018 Nov; 41():1-25. PubMed ID: 30471641 [TBL] [Abstract][Full Text] [Related]
15. Redox Modulating NRF2: A Potential Mediator of Cancer Stem Cell Resistance. Ryoo IG; Lee SH; Kwak MK Oxid Med Cell Longev; 2016; 2016():2428153. PubMed ID: 26682001 [TBL] [Abstract][Full Text] [Related]
16. Redox regulation in cancer: a double-edged sword with therapeutic potential. Acharya A; Das I; Chandhok D; Saha T Oxid Med Cell Longev; 2010; 3(1):23-34. PubMed ID: 20716925 [TBL] [Abstract][Full Text] [Related]
17. Current Development of ROS-Modulating Agents as Novel Antitumor Therapy. Wang N; Wu Y; Bian J; Qian X; Lin H; Sun H; You Q; Zhang X Curr Cancer Drug Targets; 2017; 17(2):122-136. PubMed ID: 26881931 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells. Wang J; Luo B; Li X; Lu W; Yang J; Hu Y; Huang P; Wen S Cell Death Dis; 2017 Jun; 8(6):e2887. PubMed ID: 28640251 [TBL] [Abstract][Full Text] [Related]
19. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Fang J; Seki T; Maeda H Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331 [TBL] [Abstract][Full Text] [Related]
20. Targeted Inhibition of Glutamine-Dependent Glutathione Metabolism Overcomes Death Resistance Induced by Chronic Cycling Hypoxia. Matschke J; Riffkin H; Klein D; Handrick R; Lüdemann L; Metzen E; Shlomi T; Stuschke M; Jendrossek V Antioxid Redox Signal; 2016 Jul; 25(2):89-107. PubMed ID: 27021152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]