These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19478949)

  • 1. Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold.
    Agarwal G; Rajavel M; Gopal B; Srinivasan N
    PLoS One; 2009 May; 4(5):e5736. PubMed ID: 19478949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins.
    Khuri S; Bakker FT; Dunwell JM
    Mol Biol Evol; 2001 Apr; 18(4):593-605. PubMed ID: 11264412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evolution of seed storage globulins and cupin superfamily].
    Shutov AD; Kakhovskaia IA
    Mol Biol (Mosk); 2011; 45(4):579-85. PubMed ID: 21954589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of functional diversity in the cupin superfamily.
    Dunwell JM; Culham A; Carter CE; Sosa-Aguirre CR; Goodenough PW
    Trends Biochem Sci; 2001 Dec; 26(12):740-6. PubMed ID: 11738598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily.
    Uberto R; Moomaw EW
    PLoS One; 2013; 8(9):e74477. PubMed ID: 24040257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cupins: the most functionally diverse protein superfamily?
    Dunwell JM; Purvis A; Khuri S
    Phytochemistry; 2004 Jan; 65(1):7-17. PubMed ID: 14697267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common Structural Core of Three-Dozen Residues Reveals Intersuperfamily Relationships.
    Mönttinen HA; Ravantti JJ; Poranen MM
    Mol Biol Evol; 2016 Jul; 33(7):1697-710. PubMed ID: 26931141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions.
    Nagano N; Orengo CA; Thornton JM
    J Mol Biol; 2002 Aug; 321(5):741-65. PubMed ID: 12206759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins.
    Hahn P; Böse J; Edler S; Lengeling A
    BMC Genomics; 2008 Jun; 9():293. PubMed ID: 18564434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of catalytic and structural diversity within the beta-clip fold.
    Iyer LM; Aravind L
    Proteins; 2004 Jun; 55(4):977-91. PubMed ID: 15146494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.
    Lakshmi B; Mishra M; Srinivasan N; Archunan G
    PLoS One; 2015; 10(8):e0135507. PubMed ID: 26263546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.
    Kinch LN; Grishin NV
    Proteins; 2002 Jul; 48(1):75-84. PubMed ID: 12012339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a new family of putative PD-(D/E)XK nucleases with unusual phylogenomic distribution and a new type of the active site.
    Feder M; Bujnicki JM
    BMC Genomics; 2005 Feb; 6():21. PubMed ID: 15720711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily.
    Dunwell JM; Khuri S; Gane PJ
    Microbiol Mol Biol Rev; 2000 Mar; 64(1):153-79. PubMed ID: 10704478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site.
    Kaminska KH; Kawai M; Boniecki M; Kobayashi I; Bujnicki JM
    BMC Struct Biol; 2008 Nov; 8():48. PubMed ID: 19014591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation.
    Burroughs AM; Iyer LM; Aravind L
    Proteins; 2009 Jun; 75(4):895-910. PubMed ID: 19089947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.
    Dong Z; Zhou H; Tao P
    Protein Sci; 2018 Feb; 27(2):421-430. PubMed ID: 29052279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.