These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 19478996)

  • 1. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.
    Friedland GD; Lakomek NA; Griesinger C; Meiler J; Kortemme T
    PLoS Comput Biol; 2009 May; 5(5):e1000393. PubMed ID: 19478996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
    Lange OF; Lakomek NA; Farès C; Schröder GF; Walter KF; Becker S; Meiler J; Grubmüller H; Griesinger C; de Groot BL
    Science; 2008 Jun; 320(5882):1471-5. PubMed ID: 18556554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COCO: a simple tool to enrich the representation of conformational variability in NMR structures.
    Laughton CA; Orozco M; Vranken W
    Proteins; 2009 Apr; 75(1):206-16. PubMed ID: 18831040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of X-ray Crystal Structure Ensemble Representations of SARS-CoV-2 Main Protease by Solution NMR Residual Dipolar Couplings.
    Shen Y; Robertson AJ; Bax A
    J Mol Biol; 2023 Jun; 435(11):168067. PubMed ID: 37330294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the quality of protein conformation ensembles with relative populations.
    Vammi V; Lin TL; Song G
    J Biomol NMR; 2014 Mar; 58(3):209-25. PubMed ID: 24519023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual dipolar couplings as a tool to study molecular recognition of ubiquitin.
    Lakomek NA; Lange OF; Walter KF; Farès C; Egger D; Lunkenheimer P; Meiler J; Grubmüller H; Becker S; de Groot BL; Griesinger C
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1433-7. PubMed ID: 19021570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component method for assessing structural heterogeneity across multiple alignment media.
    Hus JC; Brüschweiler R
    J Biomol NMR; 2002 Oct; 24(2):123-32. PubMed ID: 12495028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings.
    Montalvao RW; De Simone A; Vendruscolo M
    J Biomol NMR; 2012 Aug; 53(4):281-92. PubMed ID: 22729708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings.
    Esteban-Martín S; Fenwick RB; Salvatella X
    J Am Chem Soc; 2010 Apr; 132(13):4626-32. PubMed ID: 20222664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of interdomain dynamics in a two-domain protein using residual dipolar couplings together with 15N relaxation data.
    Ryabov Y; Fushman D
    Magn Reson Chem; 2006 Jul; 44 Spec No():S143-51. PubMed ID: 16823894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrogen bond regulates slow motions in ubiquitin by modulating a β-turn flip.
    Sidhu A; Surolia A; Robertson AD; Sundd M
    J Mol Biol; 2011 Sep; 411(5):1037-48. PubMed ID: 21741979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings.
    Nodet G; Salmon L; Ozenne V; Meier S; Jensen MR; Blackledge M
    J Am Chem Soc; 2009 Dec; 131(49):17908-18. PubMed ID: 19908838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin.
    Huang JR; Grzesiek S
    J Am Chem Soc; 2010 Jan; 132(2):694-705. PubMed ID: 20000836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico elucidation of the recognition dynamics of ubiquitin.
    Long D; Brüschweiler R
    PLoS Comput Biol; 2011 Apr; 7(4):e1002035. PubMed ID: 21533067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design.
    Humphris EL; Kortemme T
    Structure; 2008 Dec; 16(12):1777-88. PubMed ID: 19081054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.
    Smith CA; Kortemme T
    J Mol Biol; 2008 Jul; 380(4):742-56. PubMed ID: 18547585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings.
    Salmon L; Giambaşu GM; Nikolova EN; Petzold K; Bhattacharya A; Case DA; Al-Hashimi HM
    J Am Chem Soc; 2015 Oct; 137(40):12954-65. PubMed ID: 26306428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping protein conformational energy landscapes using NMR and molecular simulation.
    Guerry P; Mollica L; Blackledge M
    Chemphyschem; 2013 Sep; 14(13):3046-58. PubMed ID: 23703956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.
    Salmon L; Bouvignies G; Markwick P; Blackledge M
    Biochemistry; 2011 Apr; 50(14):2735-47. PubMed ID: 21388216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.