These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19479003)

  • 1. Membrane-enhanced surface acoustic wave analysis of grafted polymer brushes.
    Brass DA; Shull KR
    J Appl Phys; 2008 Apr; 103(7):73517-7351713. PubMed ID: 19479003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact studies of weakly compressed PEG brushes with a quartz crystal resonator.
    Brass DA; Shull KR
    Langmuir; 2006 Oct; 22(22):9225-33. PubMed ID: 17042534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Measurement of Polymer Brush Dynamics Using Silicon Photonic Microring Resonators: Analyte Partitioning and Interior Brush Kinetics.
    Wetzler SP; Miller KA; Kisley L; Stanton ALD; Braun PV; Bailey RC
    Langmuir; 2020 Sep; 36(35):10351-10360. PubMed ID: 32852216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis of Polymer Brush Formation Kinetics Using Quartz Crystal Microbalance: Viscoelasticity of Polymer Brush.
    Tanoue H; Yamada NL; Ito K; Yokoyama H
    Langmuir; 2017 May; 33(21):5166-5172. PubMed ID: 28426224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes.
    Zhuang P; Dirani A; Glinel K; Jonas AM
    Langmuir; 2016 Apr; 32(14):3433-44. PubMed ID: 27003634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y; Onodera Y; Ishihara K
    Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions.
    Riley JK; Matyjaszewski K; Tilton RD
    J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotribological properties of nanostructured poly(cysteine methacrylate) brushes.
    Al-Jaf O; Alswieleh A; Armes SP; Leggett GJ
    Soft Matter; 2017 Mar; 13(10):2075-2084. PubMed ID: 28217790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Dissociation of Carboxylic Acid Groups in a Weak Polyelectrolyte Brush Depend on Their Distance from the Substrate.
    Ehtiati K; Moghaddam SZ; Daugaard AE; Thormann E
    Langmuir; 2020 Mar; 36(9):2339-2348. PubMed ID: 32069409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical quartz crystal impedance study of redox hydrogel mediators for amperometric enzyme electrodes.
    Etchenique RA; Calvo EJ
    Anal Chem; 1997 Dec; 69(23):4833-41. PubMed ID: 21639155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal amplification with multilayer arrangements on chemical quartz-crystal-resonator sensors.
    Lucklum R; Behling C; Hauptmann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1246-52. PubMed ID: 18238667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study.
    Bittrich E; Rodenhausen KB; Eichhorn KJ; Hofmann T; Schubert M; Stamm M; Uhlmann P
    Biointerphases; 2010 Dec; 5(4):159-67. PubMed ID: 21219037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.
    Emilsson G; Schoch RL; Feuz L; Höök F; Lim RY; Dahlin AB
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7505-15. PubMed ID: 25812004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition, thickness and properties of grafted copolymer brush coatings determined by ellipsometry: calculation and prediction.
    Kostruba A; Stetsyshyn Y; Mayevska S; Yakovlev M; Vankevych P; Nastishin Y; Kravets V
    Soft Matter; 2018 Feb; 14(6):1016-1025. PubMed ID: 29327760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Cell Adhesion onto a Phospholipid Polymer Brush Surface Modified with a Terminal Cell Adhesion Peptide.
    Inoue Y; Onodera Y; Ishihara K
    ACS Appl Mater Interfaces; 2018 May; 10(17):15250-15257. PubMed ID: 29652126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quartz crystal microbalance studies of the contact between soft, viscoelastic solids.
    Kunze M; Shull KR; Johannsmann D
    Langmuir; 2006 Jan; 22(1):169-73. PubMed ID: 16378416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment.
    Wang Z; Luan Y; Gan T; Gong X; Chen H; Ngai T
    Colloids Surf B Biointerfaces; 2017 Feb; 150():279-287. PubMed ID: 28341156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.