These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19479067)

  • 1. GPS measurement error gives rise to spurious 180 degree turning angles and strong directional biases in animal movement data.
    Hurford A
    PLoS One; 2009 May; 4(5):e5632. PubMed ID: 19479067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of GPS units for deployment on semiaquatic animals.
    Schlippe Justicia L; Rosell F; Mayer M
    PLoS One; 2018; 13(12):e0207938. PubMed ID: 30521569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of micro-GPS receivers for tracking small-bodied mammals.
    McMahon LA; Rachlow JL; Shipley LA; Forbey JS; Johnson TR; Olsoy PJ
    PLoS One; 2017; 12(3):e0173185. PubMed ID: 28301495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why GPS makes distances bigger than they are.
    Ranacher P; Brunauer R; Trutschnig W; Van der Spek S; Reich S
    Int J Geogr Inf Sci; 2016 Feb; 30(2):316-333. PubMed ID: 27019610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis.
    Williams DM; Dechen Quinn A; Porter WF
    PLoS One; 2012; 7(11):e48439. PubMed ID: 23144884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable global positioning system receivers: static validity and environmental conditions.
    Duncan S; Stewart TI; Oliver M; Mavoa S; MacRae D; Badland HM; Duncan MJ
    Am J Prev Med; 2013 Feb; 44(2):e19-29. PubMed ID: 23332343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.
    Bradshaw CJ; Sims DW; Hays GC
    Ecol Appl; 2007 Mar; 17(2):628-38. PubMed ID: 17489266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.
    de Weerd N; van Langevelde F; van Oeveren H; Nolet BA; Kölzsch A; Prins HH; de Boer WF
    PLoS One; 2015; 10(6):e0129030. PubMed ID: 26107643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach.
    Recio MR; Mathieu R; Denys P; Sirguey P; Seddon PJ
    PLoS One; 2011; 6(12):e28225. PubMed ID: 22163286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus.
    Vazquez-Prokopec GM; Stoddard ST; Paz-Soldan V; Morrison AC; Elder JP; Kochel TJ; Scott TW; Kitron U
    Int J Health Geogr; 2009 Nov; 8():68. PubMed ID: 19948034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of GPS imputation methods in environmental health research.
    Hwang S; Webber-Ritchey K; Moxley E
    Geospat Health; 2022 Aug; 17(2):. PubMed ID: 36047344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports.
    Duffield R; Reid M; Baker J; Spratford W
    J Sci Med Sport; 2010 Sep; 13(5):523-5. PubMed ID: 19853507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion (
    Gunner RM; Wilson RP; Holton MD; Hopkins P; Bell SH; Marks NJ; Bennett NC; Ferreira S; Govender D; Viljoen P; Bruns A; van Schalkwyk OL; Bertelsen MF; Duarte CM; van Rooyen MC; Tambling CJ; Göppert A; Diesel D; Scantlebury DM
    J R Soc Interface; 2022 Jan; 19(186):20210692. PubMed ID: 35042386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements.
    Forin-Wiart MA; Hubert P; Sirguey P; Poulle ML
    PLoS One; 2015; 10(6):e0129271. PubMed ID: 26086958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of ARGOS locations of Pinnipeds at-sea estimated using Fastloc GPS.
    Costa DP; Robinson PW; Arnould JP; Harrison AL; Simmons SE; Hassrick JL; Hoskins AJ; Kirkman SP; Oosthuizen H; Villegas-Amtmann S; Crocker DE
    PLoS One; 2010 Jan; 5(1):e8677. PubMed ID: 20090942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal and circadian biases in bird tracking with solar GPS-tags.
    Silva R; Afán I; Gil JA; Bustamante J
    PLoS One; 2017; 12(10):e0185344. PubMed ID: 29020062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying resting locations of a small elusive forest carnivore using a two-stage model accounting for GPS measurement error and hidden behavioral states.
    Hance DJ; Moriarty KM; Hollen BA; Perry RW
    Mov Ecol; 2021 Apr; 9(1):17. PubMed ID: 33823940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands.
    Johnston RJ; Watsford ML; Kelly SJ; Pine MJ; Spurrs RW
    J Strength Cond Res; 2014 Jun; 28(6):1649-55. PubMed ID: 24276300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording fine-scale movement of ground beetles by two methods: Potentials and methodological pitfalls.
    Růžičková J; Elek Z
    Ecol Evol; 2021 Jul; 11(13):8562-8572. PubMed ID: 34257916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of GPS/GPRS tracking devices improves with increased fix interval and is not affected by animal deployment.
    Acácio M; Atkinson PW; Silva JP; Franco AMA
    PLoS One; 2022; 17(3):e0265541. PubMed ID: 35353826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.