These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19479323)

  • 1. Empirical estimation of the energetic contribution of individual interface residues in structures of protein-protein complexes.
    Guharoy M; Chakrabarti P
    J Comput Aided Mol Des; 2009 Sep; 23(9):645-54. PubMed ID: 19479323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods.
    Lise S; Archambeau C; Pontil M; Jones DT
    BMC Bioinformatics; 2009 Oct; 10():365. PubMed ID: 19878545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomeric protein structure networks: insights into protein-protein interactions.
    Brinda KV; Vishveshwara S
    BMC Bioinformatics; 2005 Dec; 6():296. PubMed ID: 16336694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic analysis of an antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles on the HyHEL-10/lysozyme interaction.
    Pons J; Rajpal A; Kirsch JF
    Protein Sci; 1999 May; 8(5):958-68. PubMed ID: 10338006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive experimental and computational analysis of binding energy hot spots at the NF-κB essential modulator/IKKβ protein-protein interface.
    Golden MS; Cote SM; Sayeg M; Zerbe BS; Villar EA; Beglov D; Sazinsky SL; Georgiadis RM; Vajda S; Kozakov D; Whitty A
    J Am Chem Soc; 2013 Apr; 135(16):6242-56. PubMed ID: 23506214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen.
    Li Y; Urrutia M; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 2003 Jan; 42(1):11-22. PubMed ID: 12515535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of substitutions in the binding surface of an antibody on antigen affinity.
    Dougan DA; Malby RL; Gruen LC; Kortt AA; Hudson PJ
    Protein Eng; 1998 Jan; 11(1):65-74. PubMed ID: 9579662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
    Romero-Durana M; Pallara C; Glaser F; Fernández-Recio J
    Methods Mol Biol; 2017; 1529():139-159. PubMed ID: 27914049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational alanine scanning mutagenesis--an improved methodological approach.
    Moreira IS; Fernandes PA; Ramos MJ
    J Comput Chem; 2007 Feb; 28(3):644-54. PubMed ID: 17195156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HotSprint: database of computational hot spots in protein interfaces.
    Guney E; Tuncbag N; Keskin O; Gursoy A
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D662-6. PubMed ID: 17959648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating protein hot spot surface analysis using ProBiS with simulated free energies of protein-protein interfacial residues.
    Carl N; Hodošček M; Vehar B; Konc J; Brooks BR; Janežič D
    J Chem Inf Model; 2012 Oct; 52(10):2541-9. PubMed ID: 23009716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutational analysis of binding interactions in an antigen-antibody protein-protein complex.
    Dall'Acqua W; Goldman ER; Lin W; Teng C; Tsuchiya D; Li H; Ysern X; Braden BC; Li Y; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 1998 Jun; 37(22):7981-91. PubMed ID: 9609690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.
    Liang S; Zhang J; Zhang S; Guo H
    Proteins; 2004 Nov; 57(3):548-57. PubMed ID: 15382230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts.
    Li Z; Wong L; Li J
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3.
    Moreira IS; Fernandes PA; Ramos MJ
    J Phys Chem B; 2007 Mar; 111(10):2697-706. PubMed ID: 17315919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.
    Simões IC; Costa IP; Coimbra JT; Ramos MJ; Fernandes PA
    J Chem Inf Model; 2017 Jan; 57(1):60-72. PubMed ID: 27936711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-world network approach to identify key residues in protein-protein interaction.
    del Sol A; O'Meara P
    Proteins; 2005 Feb; 58(3):672-82. PubMed ID: 15617065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrically centered region: a "wet" model of protein binding hot spots not excluding water molecules.
    Li Z; Li J
    Proteins; 2010 Dec; 78(16):3304-16. PubMed ID: 20818601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.