BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 19479373)

  • 21. Involvement of glypican-1 autoprocessing in scrapie infection.
    Löfgren K; Cheng F; Fransson LA; Bedecs K; Mani K
    Eur J Neurosci; 2008 Sep; 28(5):964-72. PubMed ID: 18717736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heparan sulfate degradation products can associate with oxidized proteins and proteasomes.
    Mani K; Cheng F; Fransson LA
    J Biol Chem; 2007 Jul; 282(30):21934-44. PubMed ID: 17540770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper-dependent co-internalization of the prion protein and glypican-1.
    Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K
    J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells.
    Greco TM; Hodara R; Parastatidis I; Heijnen HF; Dennehy MK; Liebler DC; Ischiropoulos H
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7420-5. PubMed ID: 16648260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann-Pick C1 fibroblasts.
    Mani K; Cheng F; Fransson LA
    Glycobiology; 2006 Aug; 16(8):711-8. PubMed ID: 16645004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein S-nitrosylation: purview and parameters.
    Hess DT; Matsumoto A; Kim SO; Marshall HE; Stamler JS
    Nat Rev Mol Cell Biol; 2005 Feb; 6(2):150-66. PubMed ID: 15688001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo.
    Cappai R; Cheng F; Ciccotosto GD; Needham BE; Masters CL; Multhaup G; Fransson LA; Mani K
    J Biol Chem; 2005 Apr; 280(14):13913-20. PubMed ID: 15677459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel aspects of glypican glycobiology.
    Fransson LA; Belting M; Cheng F; Jönsson M; Mani K; Sandgren S
    Cell Mol Life Sci; 2004 May; 61(9):1016-24. PubMed ID: 15112050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1.
    Mani K; Cheng F; Sandgren S; Van Den Born J; Havsmark B; Ding K; Fransson LA
    Glycobiology; 2004 Jul; 14(7):599-607. PubMed ID: 15044385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide.
    Belting M; Mani K; Jönsson M; Cheng F; Sandgren S; Jonsson S; Ding K; Delcros JG; Fransson LA
    J Biol Chem; 2003 Nov; 278(47):47181-9. PubMed ID: 12972423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate.
    Mani K; Cheng F; Havsmark B; Jönsson M; Belting M; Fransson LA
    J Biol Chem; 2003 Oct; 278(40):38956-65. PubMed ID: 12732622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heparan sulfate proteoglycan as a plasma membrane carrier.
    Belting M
    Trends Biochem Sci; 2003 Mar; 28(3):145-51. PubMed ID: 12633994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Location of N-unsubstituted glucosamine residues in heparan sulfate.
    Westling C; Lindahl U
    J Biol Chem; 2002 Dec; 277(51):49247-55. PubMed ID: 12374790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes.
    Cheng F; Mani K; van den Born J; Ding K; Belting M; Fransson LA
    J Biol Chem; 2002 Nov; 277(46):44431-9. PubMed ID: 12226079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1.
    Xia G; Chen J; Tiwari V; Ju W; Li JP; Malmstrom A; Shukla D; Liu J
    J Biol Chem; 2002 Oct; 277(40):37912-9. PubMed ID: 12138164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols.
    Ding K; Mani K; Cheng F; Belting M; Fransson LA
    J Biol Chem; 2002 Sep; 277(36):33353-60. PubMed ID: 12084716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D.
    Liu J; Shriver Z; Pope RM; Thorp SC; Duncan MB; Copeland RJ; Raska CS; Yoshida K; Eisenberg RJ; Cohen G; Linhardt RJ; Sasisekharan R
    J Biol Chem; 2002 Sep; 277(36):33456-67. PubMed ID: 12080045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biotin switch method for the detection of S-nitrosylated proteins.
    Jaffrey SR; Snyder SH
    Sci STKE; 2001 Jun; 2001(86):pl1. PubMed ID: 11752655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulations of glypican-1 heparan sulfate structure by inhibition of endogenous polyamine synthesis. Mapping of spermine-binding sites and heparanase, heparin lyase, and nitric oxide/nitrite cleavage sites.
    Ding K; Sandgren S; Mani K; Belting M; Fransson LA
    J Biol Chem; 2001 Dec; 276(50):46779-91. PubMed ID: 11577085
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.