These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19479734)

  • 1. Non-Born-Oppenheimer dynamics calculations using the coherent switching with decay of mixing method.
    Li B; Chu TS; Han KL
    J Comput Chem; 2010 Jan; 31(2):362-70. PubMed ID: 19479734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent switching with decay of mixing: an improved treatment of electronic coherence for non-Born-Oppenheimer trajectories.
    Zhu C; Nangia S; Jasper AW; Truhlar DG
    J Chem Phys; 2004 Oct; 121(16):7658-70. PubMed ID: 15485225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithmic decoherence time for decay-of-mixing non-Born-Oppenheimer dynamics.
    Cheng SC; Zhu C; Liang KK; Lin SH; Truhlar DG
    J Chem Phys; 2008 Jul; 129(2):024112. PubMed ID: 18624521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The three-dimensional nonadiabatic dynamics calculation of DH(2)(+) and HD(2)(+) systems by using the trajectory surface hopping method based on the Zhu-Nakamura theory.
    Li B; Han KL
    J Chem Phys; 2008 Mar; 128(11):114116. PubMed ID: 18361563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Born-Oppenheimer trajectories with self-consistent decay of mixing.
    Zhu C; Jasper AW; Truhlar DG
    J Chem Phys; 2004 Mar; 120(12):5543-57. PubMed ID: 15267430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Born-Oppenheimer molecular dynamics.
    Jasper AW; Nangia S; Zhu C; Truhlar DG
    Acc Chem Res; 2006 Feb; 39(2):101-8. PubMed ID: 16489729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching.
    Zhu C; Jasper AW; Truhlar DG
    J Chem Theory Comput; 2005 Jul; 1(4):527-40. PubMed ID: 26641672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed quantum-classical study of nonadiabatic dynamics in the O(3P(2,1,0),1D2) + H2 reaction.
    Li B; Han KL
    J Phys Chem A; 2009 Sep; 113(38):10189-95. PubMed ID: 19722530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic time-dependent wave packet study of the D+ + H2 reaction system.
    Chu TS; Han KL
    J Phys Chem A; 2005 Mar; 109(10):2050-6. PubMed ID: 16838974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiclassical nonadiabatic dynamics based on quantum trajectories for the O(3P,1D) + H2 system.
    Garashchuk S; Rassolov VA; Schatz GC
    J Chem Phys; 2006 Jun; 124(24):244307. PubMed ID: 16821977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conical intersections and semiclassical trajectories: comparison to accurate quantum dynamics and analyses of the trajectories.
    Jasper AW; Truhlar DG
    J Chem Phys; 2005 Jan; 122(4):44101. PubMed ID: 15740229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Born-Oppenheimer molecular dynamics of Na...FH photodissociation.
    Jasper AW; Truhlar DG
    J Chem Phys; 2007 Nov; 127(19):194306. PubMed ID: 18035882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adiabatic quantum dynamics of CH(X2Π) + H(2S) reactions on the CH2(X̃3A″) surface and role of the excited electronic states.
    Gamallo P; Defazio P; Akpinar S; Petrongolo C
    J Phys Chem A; 2012 Aug; 116(32):8291-6. PubMed ID: 22817398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum wave packet study of the H+ + D2 reaction on diabatic potential energy surfaces.
    Lu RF; Chu TS; Han KL
    J Phys Chem A; 2005 Aug; 109(30):6683-8. PubMed ID: 16834020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.
    Valero R; Truhlar DG; Jasper AW
    J Phys Chem A; 2008 Jun; 112(25):5756-69. PubMed ID: 18529041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic effects in the H + H2 exchange reaction: accurate quantum dynamics calculations at a state-to-state level.
    Chu TS; Han KL; Hankel M; Balint-Kurti GG; Kuppermann A; Abrol R
    J Chem Phys; 2009 Apr; 130(14):144301. PubMed ID: 19368439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the rotational excitation of D2 and of the potential energy surface on the H+ + D2 --> HD + D+ reaction.
    González-Lezana T; Honvault P; Jambrina PG; Aoiz FJ; Launay JM
    J Chem Phys; 2009 Jul; 131(4):044315. PubMed ID: 19655875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Born-Oppenheimer electronic and nuclear wavepacket dynamics.
    Yonehara T; Takahashi S; Takatsuka K
    J Chem Phys; 2009 Jun; 130(21):214113. PubMed ID: 19508062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical wave packet and quasiclassical trajectory calculations for the Li + H2(+) reaction.
    Bulut N; Castillo JF; Bañares L; Aoiz FJ
    J Phys Chem A; 2009 Dec; 113(52):14657-63. PubMed ID: 19621933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong geometric-phase effects in the hydrogen-exchange reaction at high collision energies.
    Bouakline F; Althorpe SC; Peláez Ruiz D
    J Chem Phys; 2008 Mar; 128(12):124322. PubMed ID: 18376934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.