BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 19479938)

  • 1. The role of the concentration and distribution of water in the complex permittivity of breast fat tissue.
    Said T; Varadan VV
    Bioelectromagnetics; 2009 Dec; 30(8):669-77. PubMed ID: 19479938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in EMF permittivity values: implications for SAR calculations.
    Hurt WD; Ziriax JM; Mason PA
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):396-401. PubMed ID: 10743782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive measurement of the electrical bioimpedance of breast tumors.
    Ohmine Y; Morimoto T; Kinouchi Y; Iritani T; Takeuchi M; Monden Y
    Anticancer Res; 2000; 20(3B):1941-6. PubMed ID: 10928131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of breast volume and weight to body fat distribution in females.
    Katch VL; Campaigne B; Freedson P; Sady S; Katch FI; Behnke AR
    Am J Phys Anthropol; 1980 Jul; 53(1):93-100. PubMed ID: 7416252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.
    Lazebnik M; McCartney L; Popovic D; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Magliocco A; Booske JH; Okoniewski M; Hagness SC
    Phys Med Biol; 2007 May; 52(10):2637-56. PubMed ID: 17473342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of human trabecular bone composition on its electrical properties.
    Sierpowska J; Lammi MJ; Hakulinen MA; Jurvelin JS; Lappalainen R; Töyräs J
    Med Eng Phys; 2007 Oct; 29(8):845-52. PubMed ID: 17097909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of mechanical compression of breast tissue.
    Kellner AL; Nelson TR; Cerviño LI; Boone JM
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1885-91. PubMed ID: 17926687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities.
    Lobato-Morales H; Corona-Chávez A; Murthy DV; Olvera-Cervantes JL
    Rev Sci Instrum; 2010 Jun; 81(6):064704. PubMed ID: 20590258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fat and hydration monitoring by abdominal bioimpedance analysis: data interpretation by hierarchical electrical modeling.
    Scharfetter H; Brunner P; Mayer M; Brandstätter B; Hinghofer-Szalkay H
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):975-82. PubMed ID: 15977727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Millimeter wave silicon micromachined waveguide probe as an aid for skin diagnosis--results of measurements on phantom material with varied water content.
    Dancila D; Augustine R; Töpfer F; Dudorov S; Hu X; Emtestam L; Tenerz L; Oberhammer J; Rydberg A
    Skin Res Technol; 2014 Feb; 20(1):116-23. PubMed ID: 23845091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries.
    Lazebnik M; Popovic D; McCartney L; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Ogilvie T; Magliocco A; Breslin TM; Temple W; Mew D; Booske JH; Okoniewski M; Hagness SC
    Phys Med Biol; 2007 Oct; 52(20):6093-115. PubMed ID: 17921574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency- and time-domain FEM models of EMG: capacitive effects and aspects of dispersion.
    Stoykov NS; Lowery MM; Taflove A; Kuiken TA
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):763-72. PubMed ID: 12148814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A five-compartment model of body composition of healthy subjects assessed using in vivo neutron activation analysis.
    Ryde SJ; Birks JL; Morgan WD; Evans CJ; Dutton J
    Eur J Clin Nutr; 1993 Dec; 47(12):863-74. PubMed ID: 8156983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of normal breast tissue by in vivo volume localized proton MR spectroscopy: variation of water-fat ratio in relation to the heterogeneity of the breast and the menstrual cycle.
    Sharma U; Kumar M; Sah RG; Jagannathan NR
    Magn Reson Imaging; 2009 Jul; 27(6):785-91. PubMed ID: 19249170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of fat distribution in whole body MRI with generally used anthropometric data.
    Ludescher B; Machann J; Eschweiler GW; Vanhöfen S; Maenz C; Thamer C; Claussen CD; Schick F
    Invest Radiol; 2009 Nov; 44(11):712-9. PubMed ID: 19809346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.