These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 19479938)

  • 21. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parametric dependence of SAR on permittivity values in a man model.
    Gajsek P; Hurt WD; Ziriax JM; Mason PA
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1169-77. PubMed ID: 11585041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a foot-to-foot impedance meter measuring extracellular fluid volume in addition to fat-free mass and fat tissue mass.
    Jaffrin MY; Kieffer R; Moreno MV
    Nutrition; 2005; 21(7-8):815-24. PubMed ID: 15975489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils.
    Kutílek M; Jendele L; Krejca M
    J Contam Hydrol; 2009 Feb; 104(1-4):84-9. PubMed ID: 19022525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Requirements for comparing the performance of finite element models of biological structures.
    Dumont ER; Grosse IR; Slater GJ
    J Theor Biol; 2009 Jan; 256(1):96-103. PubMed ID: 18834892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-fat separation with IDEAL gradient-echo imaging.
    Reeder SB; McKenzie CA; Pineda AR; Yu H; Shimakawa A; Brau AC; Hargreaves BA; Gold GE; Brittain JH
    J Magn Reson Imaging; 2007 Mar; 25(3):644-52. PubMed ID: 17326087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the electroporation in the field calculation in biological tissues.
    Ramos A
    Artif Organs; 2005 Jun; 29(6):510-3. PubMed ID: 15926990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Computer-assisted tissue analysis for cancer detection in breast ultrasound--significance of reference values].
    Heywang SW; Bartelt H; Beck R; Breimesser F; Runggaldier D; Eiermann W; Permanetter W
    Digitale Bilddiagn; 1989 Dec; 9(4):127-34. PubMed ID: 2698306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A finite-element analysis model of orbital biomechanics.
    Schutte S; van den Bedem SP; van Keulen F; van der Helm FC; Simonsz HJ
    Vision Res; 2006 May; 46(11):1724-31. PubMed ID: 16413594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water molecule clusters measured at water/air interfaces using atomic force microscopy.
    Teschke O; de Souza EF
    Phys Chem Chem Phys; 2005 Nov; 7(22):3856-65. PubMed ID: 16358037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The utility of a marched absorbing layer boundary condition in the finite element analysis of diffuse photon density wave propagation in tissues relevant to breast imaging.
    Li C; Cheung MR
    Comput Biol Med; 2009 Oct; 39(10):934-9. PubMed ID: 19665697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Validation of equations to assess body composition using anthropometric data in Chilean preschool children].
    Velásquez R M; Salazar R G; Vio del R F; Díaz Z N; Anziani G A
    Rev Med Chil; 2008 Apr; 136(4):433-41. PubMed ID: 18769785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.
    Eves EE; Murphy EK; Yakovlev VV
    J Microw Power Electromagn Energy; 2007; 41(4):81-94. PubMed ID: 18557399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A polynomial hyperelastic model for the mixture of fat and glandular tissue in female breast.
    Calvo-Gallego JL; Martínez-Reina J; Domínguez J
    Int J Numer Method Biomed Eng; 2015 Sep; 31(9):e02723. PubMed ID: 25950862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Precision waveguide system for measurement of complex permittivity of liquids at frequencies from 60 to 90 GHz.
    Hunger J; Cerjak I; Schoenmaker H; Bonn M; Bakker HJ
    Rev Sci Instrum; 2011 Oct; 82(10):104703. PubMed ID: 22047313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite-element method for calculation of the effective permittivity of random inhomogeneous media.
    Myroshnychenko V; Brosseau C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016701. PubMed ID: 15697758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined Thickness and Permittivity Measurement of Thin Layers with Open-Ended Coaxial Probes.
    Folgerø K; Haukalid K; Kocbach J; Peterson AS
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency.
    Xia S; Xu Z; Wei X
    Rev Sci Instrum; 2009 Nov; 80(11):114703. PubMed ID: 19947747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.