These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19480606)

  • 1. Muscle bioenergetics and metabolic control at altitude.
    Cerretelli P; Marzorati M; Marconi C
    High Alt Med Biol; 2009; 10(2):165-74. PubMed ID: 19480606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of the muscle proteome to exercise at altitude.
    Flueck M
    High Alt Med Biol; 2009; 10(2):183-93. PubMed ID: 19519225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of skeletal muscle mitochondria to hypoxia.
    Hoppeler H; Vogt M; Weibel ER; Flück M
    Exp Physiol; 2003 Jan; 88(1):109-19. PubMed ID: 12525860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications.
    Murray AJ; Montgomery HE; Feelisch M; Grocott MPW; Martin DS
    Biochem Soc Trans; 2018 Jun; 46(3):599-607. PubMed ID: 29678953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine tuning the HIF-1 'global' O2 sensor for hypobaric hypoxia in Andean high-altitude natives.
    Hochachka PW; Rupert JL
    Bioessays; 2003 May; 25(5):515-9. PubMed ID: 12717822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic basis to Sherpa altitude adaptation.
    Horscroft JA; Kotwica AO; Laner V; West JA; Hennis PJ; Levett DZH; Howard DJ; Fernandez BO; Burgess SL; Ament Z; Gilbert-Kawai ET; Vercueil A; Landis BD; Mitchell K; Mythen MG; Branco C; Johnson RS; Feelisch M; Montgomery HE; Griffin JL; Grocott MPW; Gnaiger E; Martin DS; Murray AJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6382-6387. PubMed ID: 28533386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle.
    Lundby C; Pilegaard H; Andersen JL; van Hall G; Sander M; Calbet JA
    J Exp Biol; 2004 Oct; 207(Pt 22):3865-71. PubMed ID: 15472017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli's contribution to the study of altitude physiology.
    Ferretti G
    Eur J Appl Physiol; 2003 Oct; 90(3-4):344-50. PubMed ID: 14530980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle capillarity during hypoxia: VEGF and its activation.
    Breen E; Tang K; Olfert M; Knapp A; Wagner P
    High Alt Med Biol; 2008; 9(2):158-66. PubMed ID: 18578647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Noakes TD
    J Appl Physiol (1985); 2009 Feb; 106(2):737-8. PubMed ID: 18450976
    [No Abstract]   [Full Text] [Related]  

  • 11. Last word on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Noakes TD
    J Appl Physiol (1985); 2009 Feb; 106(2):745. PubMed ID: 19196919
    [No Abstract]   [Full Text] [Related]  

  • 12. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.
    Capitanio D; Fania C; Torretta E; Viganò A; Moriggi M; Bravatà V; Caretti A; Levett DZH; Grocott MPW; Samaja M; Cerretelli P; Gelfi C
    Sci Rep; 2017 Aug; 7(1):9723. PubMed ID: 28852047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New aspects of altitude adaptation in Tibetans: a proteomic approach.
    Gelfi C; De Palma S; Ripamonti M; Eberini I; Wait R; Bajracharya A; Marconi C; Schneider A; Hoppeler H; Cerretelli P
    FASEB J; 2004 Mar; 18(3):612-4. PubMed ID: 14734630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commentaries on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Marcora SM
    J Appl Physiol (1985); 2009 Feb; 106(2):739. PubMed ID: 19196918
    [No Abstract]   [Full Text] [Related]  

  • 15. Origin of the lactate paradox: muscles or brain?
    Wagner PD
    J Appl Physiol (1985); 2009 Feb; 106(2):740-1. PubMed ID: 19244609
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of hypoxia on muscular performance capacity: "living low--training high"].
    Vogt M; Billeter R; Hoppeler H
    Ther Umsch; 2003 Jul; 60(7):419-24. PubMed ID: 12956036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia.
    Juel C; Lundby C; Sander M; Calbet JA; Hall Gv
    J Physiol; 2003 Apr; 548(Pt 2):639-48. PubMed ID: 12611920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia.
    Viganò A; Ripamonti M; De Palma S; Capitanio D; Vasso M; Wait R; Lundby C; Cerretelli P; Gelfi C
    Proteomics; 2008 Nov; 8(22):4668-79. PubMed ID: 18937252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial complex III regulates hypoxic activation of HIF.
    Klimova T; Chandel NS
    Cell Death Differ; 2008 Apr; 15(4):660-6. PubMed ID: 18219320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure.
    Gore CJ; Clark SA; Saunders PU
    Med Sci Sports Exerc; 2007 Sep; 39(9):1600-9. PubMed ID: 17805094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.