These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19480647)

  • 1. A single muscle moves a crustacean limb joint rhythmically by acting against a spring containing resilin.
    Burrows M
    BMC Biol; 2009 May; 7():27. PubMed ID: 19480647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A buckling region in locust hindlegs contains resilin and absorbs energy when jumping or kicking goes wrong.
    Bayley TG; Sutton GP; Burrows M
    J Exp Biol; 2012 Apr; 215(Pt 7):1151-61. PubMed ID: 22399660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking.
    Burrows M; Sutton GP
    J Exp Biol; 2012 Oct; 215(Pt 19):3501-12. PubMed ID: 22693029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy storage and synchronisation of hind leg movements during jumping in planthopper insects (Hemiptera, Issidae).
    Burrows M
    J Exp Biol; 2010 Feb; 213(3):469-78. PubMed ID: 20086132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody labelling of resilin in energy stores for jumping in plant sucking insects.
    Burrows M; Borycz JA; Shaw SR; Elvin CM; Meinertzhagen IA
    PLoS One; 2011; 6(12):e28456. PubMed ID: 22163306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects.
    Burrows M; Shaw SR; Sutton GP
    BMC Biol; 2008 Sep; 6():41. PubMed ID: 18826572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and deposition of resilin in energy stores for locust jumping.
    Burrows M
    J Exp Biol; 2016 Aug; 219(Pt 16):2449-57. PubMed ID: 27259374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resilin-like protein in the clamp sclerites of the gill monogenean Diplozoon paradoxum Nordmann, 1832.
    Wong WL; Michels J; Gorb SN
    Parasitology; 2013 Jan; 140(1):95-8. PubMed ID: 22939032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanics of elastic loading and recoil in anuran jumping.
    Astley HC; Roberts TJ
    J Exp Biol; 2014 Dec; 217(Pt 24):4372-8. PubMed ID: 25520385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement.
    Olberding JP; Deban SM; Rosario MV; Azizi E
    Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-joint dynamics and the development of movement control.
    Otten E
    Neural Plast; 2005; 12(2-3):89-98; discussion 263-72. PubMed ID: 16097477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jumping mechanisms in flatid planthoppers (Hemiptera, Flatidae).
    Burrows M
    J Exp Biol; 2014 Jul; 217(Pt 14):2590-600. PubMed ID: 24803464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics of the activity of antagonist muscle efferent neurons during movement of the crayfish claw dactylopodite].
    Stepushkina TA; Grachev GI; Kan GS
    Fiziol Zh SSSR Im I M Sechenova; 1970 Oct; 56(10):1418-26. PubMed ID: 5502677
    [No Abstract]   [Full Text] [Related]  

  • 15. Co-contraction and passive forces facilitate load compensation of aimed limb movements.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci; 2006 May; 26(19):4995-5007. PubMed ID: 16687491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint receptors modulate short and long latency muscle responses in the awake cat.
    Marshall KW; Tatton WG
    Exp Brain Res; 1990; 83(1):137-50. PubMed ID: 2073935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and static control of the human knee joint in abduction-adduction.
    Zhang LQ; Wang G
    J Biomech; 2001 Sep; 34(9):1107-15. PubMed ID: 11506781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system.
    Shadmehr R; Arbib MA
    Biol Cybern; 1992; 66(6):463-77. PubMed ID: 1586671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study and modelling of the dynamics of muscular stress as affected by motor neuron activity using the abductor claw muscle of the fresh water crayfish Astacus leptodactylus as an example].
    El'iasberg VM; Kosolapov VN
    Dokl Akad Nauk SSSR; 1971; 197(5):1225-8. PubMed ID: 5090843
    [No Abstract]   [Full Text] [Related]  

  • 20. [A model of central regulation of movement parameters].
    Adamovich SV; Fel'dman AG
    Biofizika; 1984; 29(2):306-9. PubMed ID: 6722197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.