These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 19480678)

  • 1. A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data.
    Dai X; Erkkilä T; Yli-Harja O; Lähdesmäki H
    BMC Bioinformatics; 2009 May; 10():165. PubMed ID: 19480678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GMM-IG framework for selecting genes as expression panel biomarkers.
    Wang M; Chen JY
    Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral recovery of outdoor illumination by an extension of the Bayesian inverse approach to the Gaussian mixture model.
    Peyvandi S; Amirshahi SH; Hernández-Andrés J; Nieves JL; Romero J
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2181-9. PubMed ID: 23201667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Including probe-level measurement error in robust mixture clustering of replicated microarray gene expression.
    Liu X; Rattray M
    Stat Appl Genet Mol Biol; 2010; 9():Article42. PubMed ID: 21194414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semisupervised Bayesian Gaussian Mixture Models for Non-Gaussian Soft Sensor.
    Shao W; Ge Z; Song Z
    IEEE Trans Cybern; 2021 Jul; 51(7):3455-3468. PubMed ID: 31722504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based clustering of microarray expression data via latent Gaussian mixture models.
    McNicholas PD; Murphy TB
    Bioinformatics; 2010 Nov; 26(21):2705-12. PubMed ID: 20802251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Based Clustering with Measurement or Estimation Errors.
    Zhang W; Di Y
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32050700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound hierarchical correlated beta mixture with an application to cluster mouse transcription factor DNA binding data.
    Dai H; Charnigo R
    Biostatistics; 2015 Oct; 16(4):641-54. PubMed ID: 25964663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of ordinal scales on Gaussian mixture recovery.
    Haslbeck JMB; Vermunt JK; Waldorp LJ
    Behav Res Methods; 2023 Jun; 55(4):2143-2156. PubMed ID: 35831565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDENTIFYING THE NUMBER OF COMPONENTS IN GAUSSIAN MIXTURE MODELS USING NUMERICAL ALGEBRAIC GEOMETRY.
    Shirinkam S; Alaeddini A; Gross E
    J Algebra Appl; 2020 Nov; 19(11):. PubMed ID: 33867617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manifold regularized semi-supervised Gaussian mixture model.
    Gan H; Sang N; Huang R
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):566-75. PubMed ID: 26366765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Inference-Based Gaussian Mixture Models With Optimal Components Estimation Towards Large-Scale Synthetic Data Generation for
    Pezoulas VC; Tachos NS; Gkois G; Olivotto I; Barlocco F; Fotiadis DI
    IEEE Open J Eng Med Biol; 2022; 3():108-114. PubMed ID: 36860496
    [No Abstract]   [Full Text] [Related]  

  • 13. Multisource single-cell data integration by MAW barycenter for Gaussian mixture models.
    Lin L; Shi W; Ye J; Li J
    Biometrics; 2023 Jun; 79(2):866-877. PubMed ID: 35220585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer-Learning-Based Gaussian Mixture Model for Distributed Clustering.
    Wang R; Han S; Zhou J; Chen Y; Wang L; Du T; Ji K; Zhao YO; Zhang K
    IEEE Trans Cybern; 2023 Nov; 53(11):7058-7070. PubMed ID: 35687639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based clustering and data transformations for gene expression data.
    Yeung KY; Fraley C; Murua A; Raftery AE; Ruzzo WL
    Bioinformatics; 2001 Oct; 17(10):977-87. PubMed ID: 11673243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mixture model with random-effects components for clustering correlated gene-expression profiles.
    Ng SK; McLachlan GJ; Wang K; Ben-Tovim Jones L; Ng SW
    Bioinformatics; 2006 Jul; 22(14):1745-52. PubMed ID: 16675467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subject level clustering using a negative binomial model for small transcriptomic studies.
    Li Q; Noel-MacDonnell JR; Koestler DC; Goode EL; Fridley BL
    BMC Bioinformatics; 2018 Dec; 19(1):474. PubMed ID: 30541426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A batch rival penalized expectation-maximization algorithm for Gaussian mixture clustering with automatic model selection.
    Wen J; Zhang D; Cheung YM; Liu H; You X
    Comput Math Methods Med; 2012; 2012():425730. PubMed ID: 22400050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model.
    Xiao J; Xu Q; Wu C; Gao Y; Hua T; Xu C
    PLoS One; 2016; 11(8):e0161112. PubMed ID: 27552203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penalized probabilistic clustering.
    Lu Z; Leen TK
    Neural Comput; 2007 Jun; 19(6):1528-67. PubMed ID: 17444759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.