These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 19480949)
1. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. Beckmann J; Lehr F; Finazzi G; Hankamer B; Posten C; Wobbe L; Kruse O J Biotechnol; 2009 Jun; 142(1):70-7. PubMed ID: 19480949 [TBL] [Abstract][Full Text] [Related]
2. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Mussgnug JH; Thomas-Hall S; Rupprecht J; Foo A; Klassen V; McDowall A; Schenk PM; Kruse O; Hankamer B Plant Biotechnol J; 2007 Nov; 5(6):802-14. PubMed ID: 17764518 [TBL] [Abstract][Full Text] [Related]
3. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Im CS; Eberhard S; Huang K; Beck CF; Grossman AR Plant J; 2006 Oct; 48(1):1-16. PubMed ID: 16972865 [TBL] [Abstract][Full Text] [Related]
4. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii. Berger H; Blifernez-Klassen O; Ballottari M; Bassi R; Wobbe L; Kruse O Mol Plant; 2014 Oct; 7(10):1545-59. PubMed ID: 25038233 [TBL] [Abstract][Full Text] [Related]
5. Action spectrum for expression of the high intensity light-inducible Lhc-like gene Lhl4 in the green alga Chlamydomonas reinhardtii. Teramoto H; Ishii A; Kimura Y; Hasegawa K; Nakazawa S; Nakamura T; Higashi S; Watanabe M; Ono TA Plant Cell Physiol; 2006 Mar; 47(3):419-25. PubMed ID: 16418228 [TBL] [Abstract][Full Text] [Related]
6. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. Jeong J; Baek K; Kirst H; Melis A; Jin E Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):45-55. PubMed ID: 27760300 [TBL] [Abstract][Full Text] [Related]
7. Light-modulated exposure of the light-harvesting complex II (LHCII) to protein kinase(s) and state transition in Chlamydomonas reinhardtii xanthophyll mutants. Vink M; Zer H; Alumot N; Gaathon A; Niyogi K; Herrmann RG; Andersson B; Ohad I Biochemistry; 2004 Jun; 43(24):7824-33. PubMed ID: 15196025 [TBL] [Abstract][Full Text] [Related]
8. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Naumann B; Busch A; Allmer J; Ostendorf E; Zeller M; Kirchhoff H; Hippler M Proteomics; 2007 Nov; 7(21):3964-79. PubMed ID: 17922516 [TBL] [Abstract][Full Text] [Related]
9. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872 [TBL] [Abstract][Full Text] [Related]
10. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Langner U; Jakob T; Stehfest K; Wilhelm C Plant Cell Environ; 2009 Mar; 32(3):250-8. PubMed ID: 19054351 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a novel Photosystem I-LHCI supercomplex isolated from Chlamydomonas reinhardtii under anaerobic (State II) conditions. Subramanyam R; Jolley C; Brune DC; Fromme P; Webber AN FEBS Lett; 2006 Jan; 580(1):233-8. PubMed ID: 16375899 [TBL] [Abstract][Full Text] [Related]
12. CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii. Tokutsu R; Iwai M; Minagawa J J Biol Chem; 2009 Mar; 284(12):7777-82. PubMed ID: 19144643 [TBL] [Abstract][Full Text] [Related]
13. High-intensity-light-dependent and transient expression of new genes encoding distant relatives of light-harvesting chlorophyll-a/b proteins in Chlamydomonas reinhardtii. Teramoto H; Itoh T; Ono TA Plant Cell Physiol; 2004 Sep; 45(9):1221-32. PubMed ID: 15509845 [TBL] [Abstract][Full Text] [Related]
14. Live-cell imaging of photosystem II antenna dissociation during state transitions. Iwai M; Yokono M; Inada N; Minagawa J Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2337-42. PubMed ID: 20080575 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light. Tolstygina IV; Antal TK; Kosourov SN; Krendeleva TE; Rubin AB; Tsygankov AA Biotechnol Bioeng; 2009 Mar; 102(4):1055-61. PubMed ID: 18985615 [TBL] [Abstract][Full Text] [Related]
16. A Light Switch Based on Protein S-Nitrosylation Fine-Tunes Photosynthetic Light Harvesting in Chlamydomonas. Berger H; De Mia M; Morisse S; Marchand CH; Lemaire SD; Wobbe L; Kruse O Plant Physiol; 2016 Jun; 171(2):821-32. PubMed ID: 27208221 [TBL] [Abstract][Full Text] [Related]
17. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. Cazzaniga S; Kim M; Bellamoli F; Jeong J; Lee S; Perozeni F; Pompa A; Jin E; Ballottari M Plant Cell Environ; 2020 Feb; 43(2):496-509. PubMed ID: 31724187 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii. Förster B; Mathesius U; Pogson BJ Proteomics; 2006 Aug; 6(15):4309-20. PubMed ID: 16800035 [TBL] [Abstract][Full Text] [Related]
19. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Teramoto H; Nakamori A; Minagawa J; Ono TA Plant Physiol; 2002 Sep; 130(1):325-33. PubMed ID: 12226512 [TBL] [Abstract][Full Text] [Related]
20. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Polle JE; Kanakagiri SD; Melis A Planta; 2003 May; 217(1):49-59. PubMed ID: 12721848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]