These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 19481054)

  • 1. Enzymatic assay of D-glucuronate using uronate dehydrogenase.
    Moon TS; Yoon SH; Tsang Mui Ching MJ; Lanza AM; Prather KL
    Anal Biochem; 2009 Sep; 392(2):183-5. PubMed ID: 19481054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectrophotometric assay of D-glucuronate based on Escherichia coli uronate isomerase and mannonate dehydrogenase.
    Linster CL; Van Schaftingen E
    Protein Expr Purif; 2004 Oct; 37(2):352-60. PubMed ID: 15358357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58.
    Yoon SH; Moon TS; Iranpour P; Lanza AM; Prather KJ
    J Bacteriol; 2009 Mar; 191(5):1565-73. PubMed ID: 19060141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
    Moon TS; Yoon SH; Lanza AM; Roy-Mayhew JD; Prather KL
    Appl Environ Microbiol; 2009 Feb; 75(3):589-95. PubMed ID: 19060162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concerning the mechanism for transfer of D-glucuronate from myo-inositol oxygenase to D-glucuronate reductase.
    Naber NI; Hamilton GA
    Biochim Biophys Acta; 1987 Feb; 911(3):365-8. PubMed ID: 3814609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of uronate dehydrogenases catalysing the initial step in an oxidative pathway.
    Pick A; Schmid J; Sieber V
    Microb Biotechnol; 2015 Jul; 8(4):633-43. PubMed ID: 25884328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Metabolic engineering of Saccharomyces cerevisiae for production of glucaric acid].
    Gong X; Liu Y; Wang C; Li J; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):228-236. PubMed ID: 28956379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate.
    Li Y; Xue Y; Cao Z; Zhou T; Alnadari F
    World J Microbiol Biotechnol; 2018 Jun; 34(7):102. PubMed ID: 29936649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies on NADPH-linked aldehyde reductase from human liver.
    Wermuth B; von Wartburg JP
    Adv Exp Med Biol; 1980; 132():189-95. PubMed ID: 7424706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin C. Biosynthesis, recycling and degradation in mammals.
    Linster CL; Van Schaftingen E
    FEBS J; 2007 Jan; 274(1):1-22. PubMed ID: 17222174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-imprinted docking of Agrobacterium tumefaciens uronate dehydrogenase for increased substrate selectivity.
    Murugan A; Prathiviraj R; Mothay D; Chellapandi P
    Int J Biol Macromol; 2019 Nov; 140():1214-1225. PubMed ID: 31472210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-mode liquid chromatography for the rapid analysis of biocatalytic glucaric acid reaction pathways.
    Petroll K; Care A; Waterstraat M; Bergquist PL; Sunna A
    Anal Chim Acta; 2019 Aug; 1066():136-145. PubMed ID: 31027529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase.
    Naula C; Alibu VP; Brock JM; Veitch NJ; Burchmore RJ; Barrett MP
    J Biochem Biophys Methods; 2008 Apr; 70(6):1185-7. PubMed ID: 18053578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport.
    Shiue E; Prather KL
    Metab Eng; 2014 Mar; 22():22-31. PubMed ID: 24333274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Hit-and-run" mechanism for D-glucuronate reduction catalyzed by D-mannonate:NAD oxidoreductase of Escherichia coli.
    Mandrand-Berthelot MA; Lagarde AE
    Biochim Biophys Acta; 1977 Jul; 483(1):6-23. PubMed ID: 195622
    [No Abstract]   [Full Text] [Related]  

  • 16. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.
    Moon TS; Dueber JE; Shiue E; Prather KL
    Metab Eng; 2010 May; 12(3):298-305. PubMed ID: 20117231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens.
    Chang YF; Feingold DS
    J Bacteriol; 1970 Apr; 102(1):85-96. PubMed ID: 4314480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the fermentative alcohol dehydrogenases of Salmonella typhimurium and Escherichia coli.
    Dailly YP; Bunch P; Clark DP
    Microbios; 2000; 103(406):179-96. PubMed ID: 11131810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction of a glucaric acid biosensor for screening myo-inositol oxygenase variants].
    Wang C; Liu Y; Gong X; Liu L; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2018 Nov; 34(11):1772-1783. PubMed ID: 30499273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene.
    Boer H; Maaheimo H; Koivula A; Penttilä M; Richard P
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):901-9. PubMed ID: 19921179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.