BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4698 related articles for article (PubMed ID: 19481559)

  • 21. Mechanism of patulin-induced apoptosis in human leukemia cells (HL-60).
    Wu TS; Liao YC; Yu FY; Chang CH; Liu BH
    Toxicol Lett; 2008 Dec; 183(1-3):105-11. PubMed ID: 18992795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arachidonic acid-induced apoptosis of human neuroblastoma SK-N-SH cells is mediated through mitochondrial alteration elicited by ROS and Ca(2+)-evoked activation of p38alpha MAPK and JNK1.
    Chen KC; Chang LS
    Toxicology; 2009 Aug; 262(3):199-206. PubMed ID: 19540902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of apoptosis by vitamin D2, ergocalciferol, via reactive oxygen species generation, glutathione depletion, and caspase activation in human leukemia Cells.
    Chen WJ; Huang YT; Wu ML; Huang TC; Ho CT; Pan MH
    J Agric Food Chem; 2008 May; 56(9):2996-3005. PubMed ID: 18386902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ornithine decarboxylase prevents tumor necrosis factor alpha-induced apoptosis by decreasing intracellular reactive oxygen species.
    Liu GY; Hung YC; Hsu PC; Liao YF; Chang WH; Tsay GJ; Hung HC
    Apoptosis; 2005 May; 10(3):569-81. PubMed ID: 15909119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade.
    Ko CH; Shen SC; Hsu CS; Chen YC
    Biochem Pharmacol; 2005 Mar; 69(6):913-27. PubMed ID: 15748703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of reactive oxygen species-independent mitochondrial pathway in gossypol-induced apoptosis.
    Hou DX; Uto T; Tong X; Takeshita T; Tanigawa S; Imamura I; Ose T; Fujii M
    Arch Biochem Biophys; 2004 Aug; 428(2):179-87. PubMed ID: 15246875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation.
    Oh SH; Lim SC
    Toxicol Appl Pharmacol; 2006 May; 212(3):212-23. PubMed ID: 16169029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Caspase-dependent molecular mechanisms of anti-human DR5 monoclonal antibody mDRA-6 inducing apoptosis of human leukemia Jurkat cells.
    Du YW; Liu GC; Wang J; Zhao YP; Li SL; Chen JG; Jiang Q; Cai J; Ma YF
    Ai Zheng; 2009 Feb; 28(2):112-6. PubMed ID: 19550122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species.
    Pan MH; Lai CS; Hsu PC; Wang YJ
    J Agric Food Chem; 2005 Feb; 53(3):620-30. PubMed ID: 15686411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway.
    Cao XH; Wang AH; Wang CL; Mao DZ; Lu MF; Cui YQ; Jiao RZ
    Chem Biol Interact; 2010 Feb; 183(3):357-62. PubMed ID: 19954742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins.
    Wu JS; Lin TN; Wu KK
    J Cell Physiol; 2009 Jul; 220(1):58-71. PubMed ID: 19229877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ROS mediates baicalin-induced apoptosis in human promyelocytic leukemia HL-60 cells through the expression of the Gadd153 and mitochondrial-dependent pathway.
    Lu HF; Hsueh SC; Ho YT; Kao MC; Yang JS; Chiu TH; Huamg SY; Lin CC; Chung JG
    Anticancer Res; 2007; 27(1A):117-25. PubMed ID: 17352223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of mitochondria and caspase pathways in N-demethyl-clarithromycin-induced apoptosis in human cervical cancer HeLa cell.
    Qiao AM; Ikejima T; Tashiro S; Onodera S; Zhang WG; Wu YL
    Acta Pharmacol Sin; 2006 Dec; 27(12):1622-9. PubMed ID: 17112418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorbitol-induced apoptosis of human leukemia is mediated by caspase activation and cytochrome c release.
    Marfè G; Morgante E; Di Stefano C; Di Renzo L; De Martino L; Iovane G; Russo MA; Sinibaldi-Salimei P
    Arch Toxicol; 2008 Jun; 82(6):371-7. PubMed ID: 18046541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway.
    Hou DX; Tong X; Terahara N; Luo D; Fujii M
    Arch Biochem Biophys; 2005 Aug; 440(1):101-9. PubMed ID: 16018963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sanguinarine-dependent induction of apoptosis in primary effusion lymphoma cells.
    Hussain AR; Al-Jomah NA; Siraj AK; Manogaran P; Al-Hussein K; Abubaker J; Platanias LC; Al-Kuraya KS; Uddin S
    Cancer Res; 2007 Apr; 67(8):3888-97. PubMed ID: 17440103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ACTX-8, a cytotoxic L-amino acid oxidase isolated from Agkistrodon acutus snake venom, induces apoptosis in Hela cervical cancer cells.
    Zhang L; Wei LJ
    Life Sci; 2007 Mar; 80(13):1189-97. PubMed ID: 17275856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells.
    Shin DY; Kim GY; Li W; Choi BT; Kim ND; Kang HS; Choi YH
    Biomed Pharmacother; 2009 Feb; 63(2):86-94. PubMed ID: 18804340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dieldrin promotes proteolytic cleavage of poly(ADP-ribose) polymerase and apoptosis in dopaminergic cells: protective effect of mitochondrial anti-apoptotic protein Bcl-2.
    Kitazawa M; Anantharam V; Kanthasamy A; Kanthasamy AG
    Neurotoxicology; 2004 Jun; 25(4):589-98. PubMed ID: 15183012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formosanin C-induced apoptosis requires activation of caspase-2 and change of mitochondrial membrane potential.
    Lee JC; Su CL; Chen LL; Won SJ
    Cancer Sci; 2009 Mar; 100(3):503-13. PubMed ID: 19154411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 235.