These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 19481572)

  • 21. Roles of glutamate signaling in preclinical and/or mechanistic models of depression.
    Tokita K; Yamaji T; Hashimoto K
    Pharmacol Biochem Behav; 2012 Feb; 100(4):688-704. PubMed ID: 21536063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ketamine followed by memantine for the treatment of major depression.
    Kollmar R; Markovic K; Thürauf N; Schmitt H; Kornhuber J
    Aust N Z J Psychiatry; 2008 Feb; 42(2):170. PubMed ID: 18197514
    [No Abstract]   [Full Text] [Related]  

  • 23. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder.
    Niciu MJ; Ionescu DF; Richards EM; Zarate CA
    J Neural Transm (Vienna); 2014 Aug; 121(8):907-24. PubMed ID: 24318540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse.
    Parsons CG; Stöffler A; Danysz W
    Neuropharmacology; 2007 Nov; 53(6):699-723. PubMed ID: 17904591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of calcium, glutamate and NMDA in major depression and therapeutic application.
    Deutschenbaur L; Beck J; Kiyhankhadiv A; Mühlhauser M; Borgwardt S; Walter M; Hasler G; Sollberger D; Lang UE
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Jan; 64():325-33. PubMed ID: 25747801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The acute effects of NMDA antagonism: from the rodent to the human brain.
    Gunduz-Bruce H
    Brain Res Rev; 2009 May; 60(2):279-86. PubMed ID: 18703087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamatergic approaches in major depressive disorder: focus on ketamine, memantine and riluzole.
    Owen RT
    Drugs Today (Barc); 2012 Jul; 48(7):469-78. PubMed ID: 22844658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do glutamatergic agents represent a new class of antidepressant drugs? Part 1.
    Sanacora G
    J Clin Psychiatry; 2009 Oct; 70(10):1473-5. PubMed ID: 19906350
    [No Abstract]   [Full Text] [Related]  

  • 29. Development of glutamate receptors in auditory neurons from long-term organotypic cultures of the embryonic chick hindbrain.
    Diaz C; Martinez-Galan JR; Juiz JM
    Eur J Neurosci; 2009 Jan; 29(2):213-30. PubMed ID: 19200228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repeated 4-aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in the neocortex.
    Világi I; Dobó E; Borbély S; Czégé D; Molnár E; Mihály A
    Exp Neurol; 2009 Sep; 219(1):136-45. PubMed ID: 19445932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamatergic synaptic inputs and ICAN: the basis for an emergent property underlying respiratory rhythm generation?
    Johnson SM
    J Physiol; 2007 Jul; 582(Pt 1):5-6. PubMed ID: 17495033
    [No Abstract]   [Full Text] [Related]  

  • 32. Mood disorders: regulation by metabotropic glutamate receptors.
    Pilc A; Chaki S; Nowak G; Witkin JM
    Biochem Pharmacol; 2008 Mar; 75(5):997-1006. PubMed ID: 18164691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between N-methyl-D-aspartic acid receptors and D1 dopamine receptors: an important mechanism for brain plasticity.
    Scott L; Aperia A
    Neuroscience; 2009 Jan; 158(1):62-6. PubMed ID: 19000746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The involvement of glutamate in the pathophysiology of depression.
    Palucha A; Pilc A
    Drug News Perspect; 2005 May; 18(4):262-8. PubMed ID: 16034483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A brief history of the development of antidepressant drugs: from monoamines to glutamate.
    Hillhouse TM; Porter JH
    Exp Clin Psychopharmacol; 2015 Feb; 23(1):1-21. PubMed ID: 25643025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An update on the role of glutamate in the pathophysiology of depression.
    Mitchell ND; Baker GB
    Acta Psychiatr Scand; 2010 Sep; 122(3):192-210. PubMed ID: 20105149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity?
    Freudenberg F; Celikel T; Reif A
    Neurosci Biobehav Rev; 2015 May; 52():193-206. PubMed ID: 25783220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity.
    Steiner J; Bogerts B; Sarnyai Z; Walter M; Gos T; Bernstein HG; Myint AM
    World J Biol Psychiatry; 2012 Oct; 13(7):482-92. PubMed ID: 21707463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity.
    Gerhard DM; Wohleb ES; Duman RS
    Drug Discov Today; 2016 Mar; 21(3):454-64. PubMed ID: 26854424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research.
    Amidfar M; Woelfer M; Réus GZ; Quevedo J; Walter M; Kim YK
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Aug; 94():109668. PubMed ID: 31207274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.