BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19481780)

  • 1. Leg deformities of oribatid mites as an indicator of environmental pollution.
    Eeva T; Penttinen R
    Sci Total Environ; 2009 Aug; 407(16):4771-6. PubMed ID: 19481780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosystems.
    Skubała P; Kafel A
    Environ Pollut; 2004 Nov; 132(1):51-60. PubMed ID: 15276273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida) Gradient study in meadow ecosystems.
    Skubała P; Zaleski T
    Sci Total Environ; 2012 Jan; 414():364-72. PubMed ID: 22134027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants: the example of oribatid mites in an abandoned mining and smelting area.
    Caruso T; Migliorini M; Bucci C; Bargagli R
    Environ Pollut; 2009 Nov; 157(11):2939-48. PubMed ID: 19586698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oribatid mite communities on lichens in heavily contaminated post-smelting dumps.
    Skubała P; Rola K; Osyczka P; Kafel A
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):578-92. PubMed ID: 25034334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals.
    Klok C; Goedhart PW; Vandecasteele B
    Environ Pollut; 2007 May; 147(1):26-31. PubMed ID: 17070636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localisation of heavy metals in the midgut epithelial cells of Xenillus tegeocranus (Hermann, 1804) (Acari: Oribatida).
    Pigino G; Migliorini M; Paccagnini E; Bernini F
    Ecotoxicol Environ Saf; 2006 Jul; 64(3):257-63. PubMed ID: 16460803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of heavy metal pollution on red wood ant (Formica s. str.) populations.
    Eeva T; Sorvari J; Koivunen V
    Environ Pollut; 2004 Dec; 132(3):533-9. PubMed ID: 15325469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of industrial heavy metal pollution on soil free-living nematode population.
    Pen-Mouratov S; Shukurov N; Steinberger Y
    Environ Pollut; 2008 Mar; 152(1):172-83. PubMed ID: 17587470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of soil mite communities (Acari: Oribatida, Mesostigmata) to elemental composition of mosses and pine needles and long-term air pollution in Scots pine (Pinus sylvestris L.) stands.
    Wierzbicka A; Dyderski MK; Kamczyc J; Rączka G; Jagodziński AM
    Sci Total Environ; 2019 Nov; 691():284-295. PubMed ID: 31323574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of heavy metal pollution in four chinese crude drugs and their cultivated soils.
    Wu J; Zou Y; Zhan X; Chen S; Lu G; Lai F
    Bull Environ Contam Toxicol; 2008 Dec; 81(6):571-3. PubMed ID: 18839045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the natural variation of oribatid mite communities with their changes associated with anthropogenic disturbance.
    Gergócs V; Hufnagel L
    Environ Monit Assess; 2017 Apr; 189(4):203. PubMed ID: 28364329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites.
    Ruf A; Beck L
    Ecotoxicol Environ Saf; 2005 Oct; 62(2):290-9. PubMed ID: 15979713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil remediation--an alternative to abate human exposure to heavy metals.
    Kucharski R; Sas-Nowosielska A
    Int J Occup Med Environ Health; 2001; 14(4):387-9. PubMed ID: 11885922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions.
    Lee SH; Kim EY; Hyun S; Kim JG
    J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of the Almalyk Industrial Complex on soil chemical and biological properties.
    Shukurov N; Pen-Mouratov S; Steinberger Y
    Environ Pollut; 2005 Jul; 136(2):331-40. PubMed ID: 15840541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient.
    Dauwe T; Janssens E; Pinxten R; Eens M
    Environ Pollut; 2005 Jul; 136(2):243-51. PubMed ID: 15840532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments.
    McLean CM; Koller CE; Rodger JC; MacFarlane GR
    Sci Total Environ; 2009 May; 407(11):3588-96. PubMed ID: 19232676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy).
    Poggio L; Vrscaj B; Schulin R; Hepperle E; Ajmone Marsan F
    Environ Pollut; 2009 Feb; 157(2):680-9. PubMed ID: 18835073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional traits of soil invertebrates as indicators for exposure to soil disturbance.
    Hedde M; van Oort F; Lamy I
    Environ Pollut; 2012 May; 164():59-65. PubMed ID: 22336731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.