These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19482632)

  • 1. Oxidative burst and plant disease resistance.
    Averyanov A
    Front Biosci (Elite Ed); 2009 Jun; 1(1):142-52. PubMed ID: 19482632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the respiratory burst response as an indicator of innate immune health in zebrafish.
    Goody MF; Peterman E; Sullivan C; Kim CH
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst.
    Singh Y; Nair AM; Verma PK
    Plant Commun; 2021 May; 2(3):100142. PubMed ID: 34027389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions.
    Romero D; Eugenia Rivera M; Cazorla FM; Codina JC; Fernández-Ortuño D; Torés JA; Pérez-García A; de Vicente A
    J Plant Physiol; 2008 Dec; 165(18):1895-905. PubMed ID: 18585824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Reactive Oxygen Species Enhance Alveolar Macrophage Activity against Aspergillus fumigatus but Are Dispensable for Host Protection.
    Shlezinger N; Hohl TM
    mSphere; 2021 Jun; 6(3):e0026021. PubMed ID: 34077261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit-Pathogen Interactions.
    Wang Y; Ji D; Chen T; Li B; Zhang Z; Qin G; Tian S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31248143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses.
    Lin ZJ; Liebrand TW; Yadeta KA; Coaker G
    Plant Physiol; 2015 Dec; 169(4):2950-62. PubMed ID: 26432875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst.
    Kobayashi M; Yoshioka M; Asai S; Nomura H; Kuchimura K; Mori H; Doke N; Yoshioka H
    New Phytol; 2012 Oct; 196(1):223-237. PubMed ID: 22783903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity.
    Yoshioka H; Asai S; Yoshioka M; Kobayashi M
    Mol Cells; 2009 Oct; 28(4):321-9. PubMed ID: 19830396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of NF-κB and respiratory burst following Aspergillus fumigatus stimulation of macrophages.
    Sun H; Xu XY; Tian XL; Shao HT; Wu XD; Wang Q; Su X; Shi Y
    Immunobiology; 2014 Jan; 219(1):25-36. PubMed ID: 23886693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Immunity against Tobamoviruses.
    Zheng X; Li Y; Liu Y
    Viruses; 2024 Mar; 16(4):. PubMed ID: 38675873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipopolysaccharides elicit an oxidative burst as a component of the innate immune system in the seagrass Thalassia testudinum.
    Loucks K; Waddell D; Ross C
    Plant Physiol Biochem; 2013 Sep; 70():295-303. PubMed ID: 23807482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas.
    Fones H; Preston GM
    FEMS Microbiol Lett; 2012 Feb; 327(1):1-8. PubMed ID: 22092667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species, essential molecules, during plant-pathogen interactions.
    Camejo D; Guzmán-Cedeño Á; Moreno A
    Plant Physiol Biochem; 2016 Jun; 103():10-23. PubMed ID: 26950921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells.
    Abdollahi H; Ghahremani Z; Erfaninia K; Mehrabi R
    Photosynth Res; 2015 May; 124(2):231-42. PubMed ID: 25820489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and histochemical characterisation of two distinct poplar Melampsora leaf rust pathosystems.
    Boyle B; Levée V; Hamel LP; Nicole MC; Séguin A
    Plant Biol (Stuttg); 2010 Mar; 12(2):364-76. PubMed ID: 20398242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of the surface features and physiological reactions of non-host species on the development of cellular structures of rust fungi].
    Plotnikova LIa
    Tsitologiia; 2008; 50(5):439-46. PubMed ID: 18683590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A burst of plant NADPH oxidases.
    Marino D; Dunand C; Puppo A; Pauly N
    Trends Plant Sci; 2012 Jan; 17(1):9-15. PubMed ID: 22037416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal.
    Ma Y; Zhao Y; Walker RK; Berkowitz GA
    Plant Physiol; 2013 Nov; 163(3):1459-71. PubMed ID: 24019427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tpl2 promotes neutrophil trafficking, oxidative burst, and bacterial killing.
    Acuff NV; Li X; Elmore J; Rada B; Watford WT
    J Leukoc Biol; 2017 Jun; 101(6):1325-1333. PubMed ID: 28356348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.