BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19482640)

  • 1. Different strategies for controlling DNA conformation: compaction and decompaction.
    Gonzalez-Perez A; Dias RS
    Front Biosci (Elite Ed); 2009 Jun; 1(1):228-41. PubMed ID: 19482640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible DNA compaction.
    González-Pérez A
    Curr Top Med Chem; 2014; 14(6):766-73. PubMed ID: 24444152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodextrins in DNA decompaction.
    González-Pérez A; Carlstedt J; Dias RS; Lindman B
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):20-7. PubMed ID: 19897344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compaction and decompaction of DNA dominated by the competition between counterions and DNA associating with cationic aggregates.
    Xu L; Feng L; Hao J; Dong S
    Colloids Surf B Biointerfaces; 2015 Oct; 134():105-12. PubMed ID: 26162979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction.
    Schimka S; Santer S; Mujkić-Ninnemann NM; Bléger D; Hartmann L; Wehle M; Lipowsky R; Santer M
    Biomacromolecules; 2016 Jun; 17(6):1959-68. PubMed ID: 27030485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-dissolution and de-compaction of DNA-cationic surfactant complexes using non-ionic surfactants.
    Corbyn CP; Fletcher PD; Gemici R; Dias RS; Miguel MG
    Phys Chem Chem Phys; 2009 Dec; 11(48):11568-76. PubMed ID: 20024429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying compaction-decompaction of DNA molecules induced by surfactants.
    Li X; Sun D; Chen Y; Wang K; He Q; Wang G
    Biochem Biophys Res Commun; 2018 Jan; 495(4):2559-2565. PubMed ID: 29288663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrin-surfactant complex: a new route in DNA decompaction.
    González-Pérez A; Dias RS; Nylander T; Lindman B
    Biomacromolecules; 2008 Mar; 9(3):772-5. PubMed ID: 18257531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure.
    Zakrevskyy Y; Titov E; Lomadze N; Santer S
    J Chem Phys; 2014 Oct; 141(16):164904. PubMed ID: 25362338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA compaction induced by a cationic polymer or surfactant impact gene expression and DNA degradation.
    Ainalem ML; Bartles A; Muck J; Dias RS; Carnerup AM; Zink D; Nylander T
    PLoS One; 2014; 9(3):e92692. PubMed ID: 24671109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decompaction of cationic gemini surfactant-induced DNA condensates by beta-cyclodextrin or anionic surfactant.
    Cao M; Deng M; Wang XL; Wang Y
    J Phys Chem B; 2008 Oct; 112(43):13648-54. PubMed ID: 18839984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-lipid systems. A physical chemistry study.
    Dias R; Antunes F; Miguel M; Lindman S; Lindman B
    Braz J Med Biol Res; 2002 May; 35(5):509-22. PubMed ID: 12011935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of cyclodextrin modification on cellular uptake and transfection efficiency of polyplexes.
    Li W; Chen L; Huang Z; Wu X; Zhang Y; Hu Q; Wang Y
    Org Biomol Chem; 2011 Oct; 9(22):7799-806. PubMed ID: 21952620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposite effect of polyamines on In vitro gene expression: Enhancement at low concentrations but inhibition at high concentrations.
    Kanemura A; Yoshikawa Y; Fukuda W; Tsumoto K; Kenmotsu T; Yoshikawa K
    PLoS One; 2018; 13(3):e0193595. PubMed ID: 29494707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible DNA compaction induced by partial intercalation of 16-Ph-16 gemini surfactants: evidence of triple helix formation.
    Grueso E; Roldan E; Perez-Tejeda P; Kuliszewska E; Molero B; Brecker L; Giráldez-Pérez RM
    Phys Chem Chem Phys; 2018 Oct; 20(38):24902-24914. PubMed ID: 30234871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compaction and decompaction of DNA induced by the cationic surfactant CTAB.
    Grueso E; Cerrillos C; Hidalgo J; Lopez-Cornejo P
    Langmuir; 2012 Jul; 28(30):10968-79. PubMed ID: 22755509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities and differences in the influence of polycations and oligomers on DNA conformation and packaging.
    Kasyanenko N; Dribinsky B
    Int J Biol Macromol; 2016 May; 86():216-23. PubMed ID: 26780466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup.
    Dias RS; Magno LM; Valente AJ; Das D; Das PK; Maiti S; Miguel MG; Lindman B
    J Phys Chem B; 2008 Nov; 112(46):14446-52. PubMed ID: 18774843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length.
    Rudiuk S; Yoshikawa K; Baigl D
    J Colloid Interface Sci; 2012 Feb; 368(1):372-7. PubMed ID: 22071517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Detecting of the Compaction and Decompaction of ctDNA Molecules Induced by Surfactants with SERS Based on a nanoPAA-ZnCl
    Hao B; Wang K; Zhou Y; Sui C; Wang L; Bai R; Yang Z
    ACS Omega; 2020 Jan; 5(2):1109-1119. PubMed ID: 31984267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.