BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 19482965)

  • 1. Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models.
    Xie Y; Garfinkel A; Weiss JN; Qu Z
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H775-84. PubMed ID: 19482965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study.
    Xie Y; Garfinkel A; Camelliti P; Kohl P; Weiss JN; Qu Z
    Heart Rhythm; 2009 Nov; 6(11):1641-9. PubMed ID: 19879544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans.
    Sato D; Shiferaw Y; Qu Z; Garfinkel A; Weiss JN; Karma A
    Biophys J; 2007 Feb; 92(4):L33-5. PubMed ID: 17172300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially discordant alternans in cardiomyocyte monolayers.
    de Diego C; Pai RK; Dave AS; Lynch A; Thu M; Chen F; Xie LH; Weiss JN; Valderrábano M
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1417-25. PubMed ID: 18223190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans.
    Kennedy M; Bers DM; Chiamvimonvat N; Sato D
    J Physiol; 2017 Apr; 595(7):2285-2297. PubMed ID: 27902841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretch-Activated Current Can Promote or Suppress Cardiac Alternans Depending on Voltage-Calcium Interaction.
    Galice S; Bers DM; Sato D
    Biophys J; 2016 Jun; 110(12):2671-2677. PubMed ID: 27332125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially discordant alternans in cardiac tissue: role of calcium cycling.
    Sato D; Shiferaw Y; Garfinkel A; Weiss JN; Qu Z; Karma A
    Circ Res; 2006 Sep; 99(5):520-7. PubMed ID: 16902177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From pulsus to pulseless: the saga of cardiac alternans.
    Weiss JN; Karma A; Shiferaw Y; Chen PS; Garfinkel A; Qu Z
    Circ Res; 2006 May; 98(10):1244-53. PubMed ID: 16728670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of short term memory and conduction velocity restitution in alternans formation.
    Wei N; Mori Y; Tolkacheva EG
    J Theor Biol; 2015 Feb; 367():21-28. PubMed ID: 25435411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of spatially discordant alternans due to fluctuations and diffusion of calcium.
    Sato D; Bers DM; Shiferaw Y
    PLoS One; 2013; 8(12):e85365. PubMed ID: 24392005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled dynamics of voltage and calcium in paced cardiac cells.
    Shiferaw Y; Sato D; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021903. PubMed ID: 15783348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
    Livshitz LM; Rudy Y
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2854-66. PubMed ID: 17277017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics.
    Sato D; Dixon RE; Santana LF; Navedo MF
    PLoS Comput Biol; 2018 Jan; 14(1):e1005906. PubMed ID: 29338006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
    Goldhaber JI; Xie LH; Duong T; Motter C; Khuu K; Weiss JN
    Circ Res; 2005 Mar; 96(4):459-66. PubMed ID: 15662034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts.
    Mora MT; Gomez JF; Morley G; Ferrero JM; Trenor B
    PLoS One; 2019; 14(6):e0217993. PubMed ID: 31211790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of spatially discordant repolarization alternans in cardiac tissue.
    Huang C; Song Z; Di Z; Qu Z
    Chaos; 2020 Dec; 30(12):123141. PubMed ID: 33380024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic origin of spatially discordant alternans in cardiac tissue.
    Hayashi H; Shiferaw Y; Sato D; Nihei M; Lin SF; Chen PS; Garfinkel A; Weiss JN; Qu Z
    Biophys J; 2007 Jan; 92(2):448-60. PubMed ID: 17071663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological modeling of fibroblasts and their interaction with myocytes.
    Sachse FB; Moreno AP; Abildskov JA
    Ann Biomed Eng; 2008 Jan; 36(1):41-56. PubMed ID: 17999190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced fibroblast-myocyte interactions in response to cardiac injury.
    Vasquez C; Mohandas P; Louie KL; Benamer N; Bapat AC; Morley GE
    Circ Res; 2010 Oct; 107(8):1011-20. PubMed ID: 20705922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study.
    Qu Z
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2803-12. PubMed ID: 15271669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.