These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19483097)

  • 1. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth.
    Crombez L; Morris MC; Dufort S; Aldrian-Herrada G; Nguyen Q; Mc Master G; Coll JL; Heitz F; Divita G
    Nucleic Acids Res; 2009 Aug; 37(14):4559-69. PubMed ID: 19483097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles.
    Shahzad MM; Mangala LS; Han HD; Lu C; Bottsford-Miller J; Nishimura M; Mora EM; Lee JW; Stone RL; Pecot CV; Thanapprapasr D; Roh JW; Gaur P; Nair MP; Park YY; Sabnis N; Deavers MT; Lee JS; Ellis LM; Lopez-Berestein G; McConathy WJ; Prokai L; Lacko AG; Sood AK
    Neoplasia; 2011 Apr; 13(4):309-19. PubMed ID: 21472135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.
    Crombez L; Morris MC; Heitz F; Divita G
    Methods Mol Biol; 2011; 764():59-73. PubMed ID: 21748633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress.
    Dume B; Licarete E; Banciu M
    Mol Ther Nucleic Acids; 2024 Sep; 35(3):102256. PubMed ID: 39045515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies.
    Fàbrega C; Aviñó A; Navarro N; Jorge AF; Grijalvo S; Eritja R
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment.
    Chakraborty K; Tripathi A; Mishra S; Mallick AM; Roy RS
    Biosci Rep; 2022 Jul; 42(7):. PubMed ID: 35638450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise.
    Tarvirdipour S; Skowicki M; Schoenenberger CA; Palivan CG
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of siRNA-PLGA/Fab'-PLGA mixed micellar system with target cell-specific recognition.
    Hazekawa M; Nishinakagawa T; Mori T; Yoshida M; Uchida T; Ishibashi D
    Sci Rep; 2021 Aug; 11(1):16789. PubMed ID: 34408228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.
    Sousa de Almeida M; Susnik E; Drasler B; Taladriz-Blanco P; Petri-Fink A; Rothen-Rutishauser B
    Chem Soc Rev; 2021 May; 50(9):5397-5434. PubMed ID: 33666625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide Spiders: Peptide-Polymer Conjugates to Traffic Nucleic Acids.
    Kwon EJ; Ko H; Bhatia SN
    Mol Pharm; 2020 Sep; 17(9):3633-3642. PubMed ID: 32786959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in oligonucleotide drug delivery.
    Roberts TC; Langer R; Wood MJA
    Nat Rev Drug Discov; 2020 Oct; 19(10):673-694. PubMed ID: 32782413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment.
    Shah SS; Casanova N; Antuono G; Sabatino D
    Front Chem; 2020; 8():218. PubMed ID: 32296681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor suppressor BLU exerts growth inhibition by blocking ERK signaling and disrupting cell cycle progression through RAS pathway interference.
    Zhang X; Shao SJ; Zhou JH; Li XW; Zheng B; Huang Z; He Z
    Int J Clin Exp Pathol; 2018; 11(1):158-168. PubMed ID: 31938097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment.
    Cummings JC; Zhang H; Jakymiw A
    Transl Res; 2019 Dec; 214():92-104. PubMed ID: 31404520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers.
    Ni R; Feng R; Chau Y
    Life (Basel); 2019 Jul; 9(3):. PubMed ID: 31324016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transportan-derived cell-penetrating peptide delivers siRNA to inhibit replication of influenza virus in vivo.
    Zhang C; Ren W; Liu Q; Tan Z; Li J; Tong C
    Drug Des Devel Ther; 2019; 13():1059-1068. PubMed ID: 31040643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy.
    Tripathi PP; Arami H; Banga I; Gupta J; Gandhi S
    Oncotarget; 2018 Dec; 9(98):37252-37267. PubMed ID: 30647857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers.
    Karim ME; Tha KK; Othman I; Borhan Uddin M; Chowdhury EH
    Pharmaceutics; 2018 May; 10(2):. PubMed ID: 29861465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-Penetrating Peptides to Enhance Delivery of Oligonucleotide-Based Therapeutics.
    McClorey G; Banerjee S
    Biomedicines; 2018 May; 6(2):. PubMed ID: 29734750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
    Ramaker K; Henkel M; Krause T; Röckendorf N; Frey A
    Drug Deliv; 2018 Nov; 25(1):928-937. PubMed ID: 29656676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.