BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19483329)

  • 1. Preparation and evaluation of novel directly-compressed fast-disintegrating furosemide tablets with sucrose stearic acid ester.
    Koseki T; Onishi H; Takahashi Y; Uchida M; Machida Y
    Biol Pharm Bull; 2009 Jun; 32(6):1126-30. PubMed ID: 19483329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel fast-disintegrating tablets by direct compression using sucrose stearic acid ester as a disintegration-accelerating agent.
    Koseki T; Onishi H; Takahashi Y; Uchida M; Machida Y
    Chem Pharm Bull (Tokyo); 2008 Oct; 56(10):1384-8. PubMed ID: 18827375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and evaluation of furosemide containing orally disintegrating tablets by direct compression.
    Gulsun T; Ozturk N; Kaynak MS; Vural I; Sahin S
    Pharmazie; 2017 Jul; 72(7):389-394. PubMed ID: 29441935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: in vitro evaluation and in vivo simulation of novel formulations.
    Rasool BK; Fahmy SA; Galeel OW
    Pak J Pharm Sci; 2012 Oct; 25(4):815-22. PubMed ID: 23009999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of medicinal carbon tablets by modified wet compression method.
    Miyachi M; Onishi H; Yumoto T; Machida Y
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1333-8. PubMed ID: 19832633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation, development, and performance evaluation of metoclopramide HCl oro-dispersible sustained release tablet.
    Kasliwal N; Negi JS; Jugran V; Jain R
    Arch Pharm Res; 2011 Oct; 34(10):1691-700. PubMed ID: 22076769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation and evaluation of taste masked orally disintegrating tablets with granules made by the wet granulation method].
    Kawano Y; Ito A; Sasatsu M; Machida Y; Onishi H
    Yakugaku Zasshi; 2010 Dec; 130(12):1737-42. PubMed ID: 21139401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of orally disintegrating tablets with taste-masking function: masking effect in granules prepared with correctives using the dry granulation method and evaluation of tablets prepared using the taste-masked granules.
    Kawano Y; Ito A; Sasatsu M; Machida Y
    Yakugaku Zasshi; 2010 Jan; 130(1):81-6. PubMed ID: 20046070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive.
    Nakamura S; Fukai T; Sakamoto T
    AAPS PharmSciTech; 2021 Dec; 23(1):37. PubMed ID: 34950985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Co-processed Excipient as a Novel Method to Compound Orally Disintegrating Tablets.
    Liew KB; Hii SH; Chew YL; Ming LC; Uddin AH; Sarker ZI
    Int J Pharm Compd; 2022; 26(3):255-263. PubMed ID: 35657749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microparticle surface layering through dry coating: impact of moisture content and process parameters on the properties of orally disintegrating tablets.
    Alyami H; Koner J; Dahmash EZ; Bowen J; Terry D; Mohammed AR
    J Pharm Pharmacol; 2017 Jul; 69(7):807-822. PubMed ID: 27696423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of fast disintegrating tablets of paracetamol prepared from a blend of croscarmellose sodium and Pleurotus tuber-regium powder.
    Eraga SO; Arhewoh MI; Akpan FE; Iwuagwu MA
    Pak J Pharm Sci; 2018 Nov; 31(6):2503-2508. PubMed ID: 30473524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Sucrose Fatty Acid Esters as Lubricants in Tablet Manufacturing.
    Nakamura S; Ishii N; Nakashima N; Sakamoto T; Yuasa H
    Chem Pharm Bull (Tokyo); 2017; 65(5):432-441. PubMed ID: 28458365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response surface methodology to optimize novel fast disintegrating tablets using β cyclodextrin as diluent.
    Late SG; Banga AK
    AAPS PharmSciTech; 2010 Dec; 11(4):1627-35. PubMed ID: 21086083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules.
    Mehta S; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2012 Jan; 422(1-2):310-7. PubMed ID: 22101283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a novel automatic disintegration apparatus for the development and evaluation of a direct compression rapidly disintegrating tablet.
    Jung HA; Augsburger LL
    Drug Dev Ind Pharm; 2012 Jul; 38(7):825-36. PubMed ID: 22091970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of general multilevel factorial design with formulation of fast disintegrating tablets containing croscaremellose sodium and Disintequick MCC-25.
    Solaiman A; Suliman AS; Shinde S; Naz S; Elkordy AA
    Int J Pharm; 2016 Mar; 501(1-2):87-95. PubMed ID: 26827922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.