BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19483784)

  • 1. Pseudomonas fluorescens ompW: plasmid localization and requirement for naphthalene uptake.
    Neher TM; Lueking DR
    Can J Microbiol; 2009 May; 55(5):553-63. PubMed ID: 19483784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Diversity of genetic systems responsible for biodegradation of naphthalene in Pseudomonas fluorescens strains].
    Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(1):70-8. PubMed ID: 15835781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Incompatibility group P-7 plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads].
    Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(3):342-8. PubMed ID: 16119847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20.
    Heinaru E; Vedler E; Jutkina J; Aava M; Heinaru A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):563-74. PubMed ID: 19744238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6.
    Li W; Shi J; Wang X; Han Y; Tong W; Ma L; Liu B; Cai B
    Gene; 2004 Jul; 336(2):231-40. PubMed ID: 15246534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The EmhABC efflux pump in Pseudomonas fluorescens LP6a is involved in naphthalene tolerance but not efflux.
    Adebusuyi AA; Foght JM
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2587-96. PubMed ID: 22940805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches.
    Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative study of the plasmids controlling naphthalene biodegradation by a Pseudomonas culture].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1984; 53(4):639-44. PubMed ID: 6434909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetic control of biphenyl and naphthalene catabolism in Pseudomonas fluorescens PfE1 and PfE2].
    Starovoĭtov II; Esina VA
    Dokl Akad Nauk SSSR; 1985; 280(2):505-8. PubMed ID: 3918843
    [No Abstract]   [Full Text] [Related]  

  • 11. Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens.
    Foght JM; Westlake DW
    Biodegradation; 1996 Aug; 7(4):353-66. PubMed ID: 8987893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics of naphthalene catabolism in pseudomonads.
    Yen KM; Serdar CM
    Crit Rev Microbiol; 1988; 15(3):247-68. PubMed ID: 3288442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of spfD gene involved in DNA phosphorothioation in Pseudomonas fluorescens Pf0-1.
    Yao F; Xu T; Zhou X; Deng Z; You D
    FEBS Lett; 2009 Feb; 583(4):729-33. PubMed ID: 19171139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of Pseudomonas fluorescens OprE and OprQ membrane proteins.
    Jaouen T; Coquet L; Marvin-Guy L; Orange N; Chevalier S; Dé E
    Biochem Biophys Res Commun; 2006 Aug; 346(3):1048-52. PubMed ID: 16777062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cloning and functional characterization of the gacS gene of the biocontrol strain Pseudomonas fluorescens 2P24].
    Wei HL; Zhang LQ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):368-72. PubMed ID: 15989228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Features of the replicon of plasmid pAM10.6 of Pseudomonas fluorescens.
    Peters M; Jõgi E; Suitso I; Punnisk T; Nurk A
    Plasmid; 2001 Jul; 46(1):25-36. PubMed ID: 11535033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a.
    Hearn EM; Dennis JJ; Gray MR; Foght JM
    J Bacteriol; 2003 Nov; 185(21):6233-40. PubMed ID: 14563857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular classification of IncP-9 naphthalene degradation plasmids.
    Izmalkova TY; Mavrodi DV; Sokolov SL; Kosheleva IA; Smalla K; Thomas CM; Boronin AM
    Plasmid; 2006 Jul; 56(1):1-10. PubMed ID: 16472859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains].
    Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM
    Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the aprX-lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ.
    McCarthy CN; Woods RG; Beacham IR
    FEMS Microbiol Lett; 2004 Dec; 241(2):243-8. PubMed ID: 15598539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.