These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19483812)

  • 41. Enhanced terahertz emission bandwidth from photoconductive antenna by manipulating carrier dynamics of semiconducting substrate with embedded plasmonic metasurface.
    Bhattacharya A; Ghindani D; Prabhu SS
    Opt Express; 2019 Oct; 27(21):30272-30279. PubMed ID: 31684276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures.
    Lepeshov S; Gorodetsky A; Krasnok A; Toropov N; Vartanyan TA; Belov P; Alú A; Rafailov EU
    Sci Rep; 2018 Apr; 8(1):6624. PubMed ID: 29700414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wave shape recovery for terahertz pulse field detection via photoconductive antenna.
    Liu J; Zou S; Yang Z; Wang K; Ye K
    Opt Lett; 2013 Jul; 38(13):2268-70. PubMed ID: 23811898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of the contact metallization on the performance of photoconductive THz antennas.
    Vieweg N; Mikulics M; Scheller M; Ezdi K; Wilk R; Hübers HW; Koch M
    Opt Express; 2008 Nov; 16(24):19695-705. PubMed ID: 19030055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. InGaAs Diodes for Terahertz Sensing-Effect of Molecular Beam Epitaxy Growth Conditions.
    Palenskis V; Minkevičius L; Matukas J; Jokubauskis D; Pralgauskaitė S; Seliuta D; Čechavičius B; Butkutė R; Valušis G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Note: Development of a high resolution and wide band terahertz spectrometer based on a 1 μm-band external cavity diode laser.
    Kitahara K; Oto K; Nakajima M; Muro K
    Rev Sci Instrum; 2013 Dec; 84(12):126102. PubMed ID: 24387478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-chip picosecond pulse detection and generation using graphene photoconductive switches.
    Hunter N; Mayorov AS; Wood CD; Russell C; Li L; Linfield EH; Davies AG; Cunningham JE
    Nano Lett; 2015 Mar; 15(3):1591-6. PubMed ID: 25710079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles.
    Lai W; Mazin Abdulmunem O; Del Pino P; Pelaz B; Parak WJ; Zhang Q; Zhang H
    Sci Rep; 2017 Apr; 7():46261. PubMed ID: 28393855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters.
    Yardimci NT; Salas R; Krivoy EM; Nair HP; Bank SR; Jarrahi M
    Opt Express; 2015 Dec; 23(25):32035-43. PubMed ID: 26698994
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.
    Murasawa K; Sato K; Hidaka T
    Rev Sci Instrum; 2011 May; 82(5):053104. PubMed ID: 21639489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Broadband THz-TDS System Based on DSTMS Emitter and LTG InGaAs/InAlAs Photoconductive Antenna Detector.
    Zhang Y; Zhang X; Li S; Gu J; Li Y; Tian Z; Ouyang C; He M; Han J; Zhang W
    Sci Rep; 2016 May; 6():26949. PubMed ID: 27244689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission.
    Heshmat B; Pahlevaninezhad H; Beard MC; Papadopoulos C; Darcie TE
    Opt Express; 2011 Aug; 19(16):15077-89. PubMed ID: 21934869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-power terahertz radiation emitter with a diamond photoconductive switch array.
    Yoneda H; Tokuyama K; Ueda K; Yamamoto H; Baba K
    Appl Opt; 2001 Dec; 40(36):6733-6. PubMed ID: 18364984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas.
    Winnerl S; Zimmermann B; Peter F; Schneider H; Helm M
    Opt Express; 2009 Feb; 17(3):1571-6. PubMed ID: 19188986
    [TBL] [Abstract][Full Text] [Related]  

  • 55. THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions.
    Dietz RJ; Gerhard M; Stanze D; Koch M; Sartorius B; Schell M
    Opt Express; 2011 Dec; 19(27):25911-7. PubMed ID: 22274179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of terahertz emission in photoconductive antennas through an additional optical continuous wave.
    Bockelt A; Palací J; Vidal B
    Opt Lett; 2013 Aug; 38(16):3123-5. PubMed ID: 24104665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Terahertz wave dielectric properties of GaAs].
    Li JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):577-9. PubMed ID: 19455776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas.
    Bitzer A; Ortner A; Walther M
    Appl Opt; 2010 Jul; 49(19):E1-6. PubMed ID: 20648112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Guided terahertz pulse reflectometry with double photoconductive antenna.
    Pan M; Cassar Q; Fauquet F; Humbert G; Mounaix P; Guillet JP
    Appl Opt; 2020 Feb; 59(6):1641-1647. PubMed ID: 32225668
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wireless audio and burst communication link with directly modulated THz photoconductive antenna.
    Liu TA; Lin GR; Chang YC; Pan CL
    Opt Express; 2005 Dec; 13(25):10416-23. PubMed ID: 19503256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.