These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19483938)

  • 1. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves.
    Zamboni-Rached M
    Opt Express; 2004 Aug; 12(17):4001-6. PubMed ID: 19483938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of "frozen waves": modeling the shape of stationary wave fields.
    Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2465-75. PubMed ID: 16302397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffraction-Attenuation resistant beams in absorbing media.
    Zamboni-Rached M
    Opt Express; 2006 Mar; 14(5):1804-9. PubMed ID: 19503509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Producing acoustic frozen waves: simulated experiments.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Hernández-Figueroa HE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2414-25. PubMed ID: 24158296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.
    Prego-Borges JL; Zamboni-Rached M; Recami E; Costa ET
    Ultrasonics; 2014 Aug; 54(6):1620-30. PubMed ID: 24709072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical approach of ordinary frozen waves for optical trapping and micromanipulation.
    Ambrosio LA; Zamboni-Rached M
    Appl Opt; 2015 Apr; 54(10):2584-93. PubMed ID: 25967163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental optical trapping with frozen waves.
    Suarez RAB; Ambrosio LA; Neves AAR; Zamboni-Rached M; Gesualdi MRR
    Opt Lett; 2020 May; 45(9):2514-2517. PubMed ID: 32356804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal, and radial polarizations.
    Ambrosio LA; Rached MZ; Gouesbet G
    Appl Opt; 2018 Apr; 57(12):3293-3300. PubMed ID: 29714319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions.
    Moreira WL; Neves AA; Garbos MK; Euser TG; Cesar CL
    Opt Express; 2016 Feb; 24(3):2370-82. PubMed ID: 26906812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of dynamic frozen waves: controlling shape, location (and speed) of diffraction-resistant beams.
    Vieira TA; Gesualdi MR; Zamboni-Rached M; Recami E
    Opt Lett; 2015 Dec; 40(24):5834-7. PubMed ID: 26670524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type alpha and integer order m with a rigid sphere: linear acoustic scattering and net instantaneous axial force.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):395-404. PubMed ID: 20178905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helical localized wave solutions of the scalar wave equation.
    Overfelt PL
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1905-11. PubMed ID: 11488494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonparaxial shape-preserving Airy beams with Bessel signature.
    Zapata-Rodríguez CJ; Naserpour M
    Opt Lett; 2014 Apr; 39(8):2507-10. PubMed ID: 24979030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of arbitrary complex quasi-non-diffracting optical patterns.
    Ortiz-Ambriz A; Lopez-Aguayo S; Kartashov YV; Vysloukh VA; Petrov D; Garcia-Gracia H; Gutiérrez-Vega JC; Torner L
    Opt Express; 2013 Sep; 21(19):22221-31. PubMed ID: 24104114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transverse (lateral) instantaneous force of an acoustical first-order Bessel vortex beam centered on a rigid sphere.
    Mitri FG; Fellah ZE
    Ultrasonics; 2012 Jan; 52(1):151-5. PubMed ID: 21899870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fields of a Bessel-Bessel light bullet of arbitrary order in an under-dense plasma.
    Salamin YI
    Sci Rep; 2018 Jul; 8(1):11362. PubMed ID: 30054577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of high-order acoustic Bessel beams by spiral diffraction gratings.
    Jiménez N; Picó R; Sánchez-Morcillo V; Romero-García V; García-Raffi LM; Staliunas K
    Phys Rev E; 2016 Nov; 94(5-1):053004. PubMed ID: 27967159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing limited diffraction beams.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):181-93. PubMed ID: 18244116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.