These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19483957)

  • 21. Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen.
    Kulatilaka WD; Gord JR; Katta VR; Roy S
    Opt Lett; 2012 Aug; 37(15):3051-3. PubMed ID: 22859082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal coherent control using shaped, temporally focused pulses.
    Oron D; Silberberg Y
    Opt Express; 2005 Nov; 13(24):9903-8. PubMed ID: 19503200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherent enhancement in two-photon fluorescence in molecular system induced by phase-jump modulated pulse.
    Zhang S; Zhang H; Yang Y; Jia T; Wang Z; Sun Z
    J Chem Phys; 2010 Mar; 132(9):094503. PubMed ID: 20210401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses.
    Isobe K; Suda A; Tanaka M; Kannari F; Kawano H; Mizuno H; Miyawaki A; Midorikawa K
    Opt Express; 2009 Aug; 17(16):13737-46. PubMed ID: 19654781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution broadband sum frequency generation vibrational spectroscopy using intrapulse interference.
    Wang Y; Ma X; Wang H; Chen D; Chou KC; Li Q
    Phys Chem Chem Phys; 2018 Aug; 20(32):20752-20755. PubMed ID: 30079417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions.
    Lucht RP; Kinnius PJ; Roy S; Gord JR
    J Chem Phys; 2007 Jul; 127(4):044316. PubMed ID: 17672699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores.
    Harada T; Matsuishi K; Oishi Y; Isobe K; Suda A; Kawan H; Mizuno H; Miyawaki A; Midorikawa K; Kannari F
    Opt Express; 2011 Jul; 19(14):13618-27. PubMed ID: 21747518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressor optimization with compressor-based multiphoton intrapulse interference phase scan (MIIPS).
    Hou B; Easter JH; Nees JA; He Z; Thomas AG; Krushelnick K
    Opt Lett; 2012 Apr; 37(8):1385-7. PubMed ID: 22513694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy.
    Metzger B; Steinmann A; Giessen H
    Opt Express; 2011 Nov; 19(24):24354-60. PubMed ID: 22109462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Femtosecond 8.5  μm source based on intrapulse difference-frequency generation of 2.1  μm pulses.
    Novák O; Krogen PR; Kroh T; Mocek T; Kärtner FX; Hong KH
    Opt Lett; 2018 Mar; 43(6):1335-1338. PubMed ID: 29543285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of two-photon interference effect with a single non-photon-number resolving detector.
    Kim H; Lee SM; Kwon O; Moon HS
    Opt Lett; 2017 Jul; 42(13):2443-2446. PubMed ID: 28957255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous spatial and temporal focusing of femtosecond pulses.
    Zhu G; van Howe J; Durst M; Zipfel W; Xu C
    Opt Express; 2005 Mar; 13(6):2153-9. PubMed ID: 19495103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy.
    Lozovoy VV; Shane JC; Xu B; Dantus M
    Opt Express; 2005 Dec; 13(26):10882-7. PubMed ID: 19503307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent A(1) phonons in Te studied with tailored femtosecond pulses.
    Misochko OV; Lebedev MV; Schäfer H; Dekorsy T
    J Phys Condens Matter; 2007 Oct; 19(40):406220. PubMed ID: 22049119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection.
    Lehmann CS; Ram NB; Powis I; Janssen MH
    J Chem Phys; 2013 Dec; 139(23):234307. PubMed ID: 24359367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust photon locking.
    Bayer T; Wollenhaupt M; Sarpe-Tudoran C; Baumert T
    Phys Rev Lett; 2009 Jan; 102(2):023004. PubMed ID: 19257269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond Laser-Induced Upconversion Luminescence in Rare-Earth Ions by Nonresonant Multiphoton Absorption.
    Yao Y; Xu C; Zheng Y; Yang C; Liu P; Jia T; Qiu J; Sun Z; Zhang S
    J Phys Chem A; 2016 Jul; 120(28):5522-6. PubMed ID: 27367751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS.
    Nogueira GT; Xu B; Coello Y; Dantus M; Cruz FC
    Opt Express; 2008 Jul; 16(14):10033-8. PubMed ID: 18607410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shaped and Feedback-Controlled Excitation of Single Molecules in the Weak-Field Limit.
    Weigel A; Sebesta A; Kukura P
    J Phys Chem Lett; 2015 Oct; 6(20):4032-7. PubMed ID: 26706166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.