These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19484036)

  • 1. Near-field optical storage system using a solid immersion lens with a left-handed material slab.
    Liu L; He S
    Opt Express; 2004 Oct; 12(20):4835-40. PubMed ID: 19484036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of near-field optical storage with a solid immersion lens.
    Zhang Y
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2132-6. PubMed ID: 16912739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cover-layer-protected solid immersion lens-based near-field recording with an annular aperture.
    Yoon YJ; Kim WC; Park KS; Park NC; Park YP
    J Opt Soc Am A Opt Image Sci Vis; 2009 Aug; 26(8):1882-8. PubMed ID: 19649130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical data storage system with a planoellipsoidal solid immersion mirror illuminated directly by a point light source.
    Zhang Y
    Appl Opt; 2006 Dec; 45(34):8653-8. PubMed ID: 17119562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.
    Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Lett; 2009 Jul; 34(13):1961-3. PubMed ID: 19571966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pupil-plane filtering for improved signal detection in an optical data-storage system incorporating a solid immersion lens.
    Milster TD; Shimura K; Jo JS; Hirota K
    Opt Lett; 1999 May; 24(9):605-7. PubMed ID: 18073797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-size effects of a left-handed material slab on the image quality.
    Chen L; He S; Shen L
    Phys Rev Lett; 2004 Mar; 92(10):107404. PubMed ID: 15089243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitation of FDTD in simulation of a perfect lens imaging system.
    Chen JJ; Grzegorczyk TM; Wu BI; Kong JA
    Opt Express; 2005 Dec; 13(26):10840-5. PubMed ID: 19503302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system.
    Huang K; Li Y
    Opt Lett; 2011 Sep; 36(18):3536-8. PubMed ID: 21931382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of waves guided by a grounded "left-handed" material slab of finite extent.
    Schelleng J; Monzon C; Loschialpo PF; Forester DW; Medgyesi-Mitschang LN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066606. PubMed ID: 15697525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic finite-difference time-domain analysis of high-speed moving metamaterials.
    Zhao Y; Chaimool S
    Sci Rep; 2018 May; 8(1):7686. PubMed ID: 29769588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure for localizing electromagnetic waves with a left-handed-medium slab and a conducting plane.
    Cheng Q; Cui TJ
    Opt Lett; 2005 May; 30(10):1216-8. PubMed ID: 15943314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing properties of Gaussian beams by a slab of Kerr-type left-handed metamaterial.
    Hu Y; Wen S; Zhuo H; You K; Fan D
    Opt Express; 2008 Mar; 16(7):4774-84. PubMed ID: 18542576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of specific absorption rate in lossy dielectric objects using a slab of left-handed material.
    Zhao L; Cui TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061911. PubMed ID: 16485978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material.
    Chiu KP; Tsai DP
    Scanning; 2004; 26(5 Suppl 1):I118-23. PubMed ID: 15540828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical field study of near-field optical recording with a solid immersion lens.
    Guo F; Schlesinger TE; Stancil DD
    Appl Opt; 2000 Jan; 39(2):324-32. PubMed ID: 18337900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of optical variables in immersion lens-based near-field optics.
    Kim WC; Yoon YJ; Choi H; Park NC; Park YP
    Opt Express; 2008 Sep; 16(18):13933-48. PubMed ID: 18773004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic waves focused by a negative-index planar lens.
    Loschialpo PF; Smith DL; Forester DW; Rachford FJ; Schelleng J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):025602. PubMed ID: 12636738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on the realization of high resolution solid immersion lens-based near-field imaging optics by use of an annular aperture.
    Moon H; Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Express; 2010 Aug; 18(16):17533-41. PubMed ID: 20721138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact structure for energy localization using a thin grounded left-handed medium slab.
    Cheng Q; Cui T; Lu WB
    Opt Express; 2005 Feb; 13(3):770-5. PubMed ID: 19494937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.