These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19484468)

  • 1. Human erythrocyte flickering: temperature, ATP concentration, water transport, and cell aging, plus a computer simulation.
    Szekely D; Yau TW; Kuchel PW
    Eur Biophys J; 2009 Sep; 38(7):923-39. PubMed ID: 19484468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex dynamics of human red blood cell flickering: alterations with in vivo aging.
    Costa M; Ghiran I; Peng CK; Nicholson-Weller A; Goldberger AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):020901. PubMed ID: 18850779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane flickering of the human erythrocyte: constrained random walk used with Bayesian analysis.
    Puckeridge M; Kuchel PW
    Eur Biophys J; 2014 May; 43(4-5):157-67. PubMed ID: 24682391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane flickering of the human erythrocyte: physical and chemical effectors.
    Puckeridge M; Chapman BE; Conigrave AD; Kuchel PW
    Eur Biophys J; 2014 May; 43(4-5):169-77. PubMed ID: 24668224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte water permeability and renal function in double knockout mice lacking aquaporin-1 and aquaporin-3.
    Yang B; Ma T; Verkman AS
    J Biol Chem; 2001 Jan; 276(1):624-8. PubMed ID: 11035042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells.
    Rodríguez-García R; López-Montero I; Mell M; Egea G; Gov NS; Monroy F
    Biophys J; 2015 Jun; 108(12):2794-806. PubMed ID: 26083919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the presence of aquaporin-3 in human red blood cells.
    Roudier N; Verbavatz JM; Maurel C; Ripoche P; Tacnet F
    J Biol Chem; 1998 Apr; 273(14):8407-12. PubMed ID: 9525951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level.
    Yoon YZ; Hong H; Brown A; Kim DC; Kang DJ; Lew VL; Cicuta P
    Biophys J; 2009 Sep; 97(6):1606-15. PubMed ID: 19751665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is an intact cytoskeleton required for red cell urea and water transport?
    Ojcius DM; Toon MR; Solomon AK
    Biochim Biophys Acta; 1988 Sep; 944(1):19-28. PubMed ID: 2843234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent sugar transport complexity in human erythrocytes.
    Leitch JM; Carruthers A
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C974-86. PubMed ID: 16928769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells.
    Cho MR; Knowles DW; Smith BL; Moulds JJ; Agre P; Mohandas N; Golan DE
    Biophys J; 1999 Feb; 76(2):1136-44. PubMed ID: 9916045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The permeability of red blood cells to chloride, urea and water.
    Brahm J
    J Exp Biol; 2013 Jun; 216(Pt 12):2238-46. PubMed ID: 23470663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes.
    Yang B; Verkman AS
    J Biol Chem; 2002 Sep; 277(39):36782-6. PubMed ID: 12133842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of membrane-bound Ca 2+ by ATP.
    Chau-Wong M; Seeman P
    Biochim Biophys Acta; 1971 Aug; 241(2):473-82. PubMed ID: 5003615
    [No Abstract]   [Full Text] [Related]  

  • 15. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.
    Campos E; Moura TF; Oliva A; Leandro P; Soveral G
    Biochem Biophys Res Commun; 2011 May; 408(3):477-81. PubMed ID: 21527251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic dependence of red cell deformability.
    Weed RI; LaCelle PL; Merrill EW
    J Clin Invest; 1969 May; 48(5):795-809. PubMed ID: 4388591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surface energy of water: the largest but forgotten source of energy in biological systems.
    Widdas WF; Baker GF
    Cytobios; 2001; 106(411):7-54. PubMed ID: 11478665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why does the mammalian red blood cell have aquaporins?
    Kuchel PW; Benga G
    Biosystems; 2005 Nov; 82(2):189-96. PubMed ID: 16112802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temperature on water diffusion in human erythrocytes and ghosts--nuclear magnetic resonance studies.
    Benga G; Pop VI; Popescu O; Hodârnău A; Borza V; Presecan E
    Biochim Biophys Acta; 1987 Dec; 905(2):339-48. PubMed ID: 2825782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force balance and membrane shedding at the red-blood-cell surface.
    Sens P; Gov N
    Phys Rev Lett; 2007 Jan; 98(1):018102. PubMed ID: 17358508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.