BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19485397)

  • 41. Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening.
    Durán A; Zamora I; Pastor M
    J Chem Inf Model; 2009 Sep; 49(9):2129-38. PubMed ID: 19728739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT(3)A, Histamine H(1), and Histamine H(4) Receptors.
    Schultes S; Kooistra AJ; Vischer HF; Nijmeijer S; Haaksma EE; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1030-44. PubMed ID: 25815783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ligand-Based Virtual Screening Using Graph Edit Distance as Molecular Similarity Measure.
    Garcia-Hernandez C; Fernández A; Serratosa F
    J Chem Inf Model; 2019 Apr; 59(4):1410-1421. PubMed ID: 30920214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of data fusion methods in virtual screening: theoretical model.
    Whittle M; Gillet VJ; Willett P; Loesel J
    J Chem Inf Model; 2006; 46(6):2193-205. PubMed ID: 17125164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a method to consistently quantify the structural distance between scaffolds and to assess scaffold hopping potential.
    Li R; Stumpfe D; Vogt M; Geppert H; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2507-14. PubMed ID: 21955025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches.
    Eckert H; Bajorath J
    Drug Discov Today; 2007 Mar; 12(5-6):225-33. PubMed ID: 17331887
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations.
    Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(1):59-68. PubMed ID: 17238249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward an ab initio fragment database for bioisosterism: dependence of QCT properties on level of theory, conformation, and chemical environment.
    Devereux M; Popelier PL; McLay IM
    J Comput Chem; 2009 Jun; 30(8):1300-18. PubMed ID: 19003976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Core trees and consensus fragment sequences for molecular representation and similarity analysis.
    Lounkine E; Bajorath J
    J Chem Inf Model; 2008 Jun; 48(6):1161-6. PubMed ID: 18491888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds.
    Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ
    J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of the MAD algorithm for virtual screening.
    Eckert H; Bajorath J
    Methods Mol Biol; 2008; 453():349-62. PubMed ID: 18712313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a fingerprint reduction approach for Bayesian similarity searching based on Kullback-Leibler divergence analysis.
    Nisius B; Vogt M; Bajorath J
    J Chem Inf Model; 2009 Jun; 49(6):1347-58. PubMed ID: 19480403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hit expansion approaches using multiple similarity methods and virtualized query structures.
    Bergner A; Parel SP
    J Chem Inf Model; 2013 May; 53(5):1057-66. PubMed ID: 23600728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. VSViewer3D: a tool for interactive data mining of three-dimensional virtual screening data.
    Diller KI; Diller DJ
    J Chem Inf Model; 2014 Dec; 54(12):3446-52. PubMed ID: 25423583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Similarity searching using 2D structural fingerprints.
    Willett P
    Methods Mol Biol; 2011; 672():133-58. PubMed ID: 20838967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relational database driven two-dimensional chemical graph analysis.
    Wilkens SJ
    Chem Biol Drug Des; 2006 Sep; 68(3):135-8. PubMed ID: 17062010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recursive median partitioning for virtual screening of large databases.
    Godden JW; Furr JR; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(1):182-8. PubMed ID: 12546552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor.
    de Graaf C; Rognan D
    J Med Chem; 2008 Aug; 51(16):4978-85. PubMed ID: 18680279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using Tversky similarity searches for core hopping: finding the needles in the haystack.
    Senger S
    J Chem Inf Model; 2009 Jun; 49(6):1514-24. PubMed ID: 19453147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Boosting virtual screening enrichments with data fusion: coalescing hits from two-dimensional fingerprints, shape, and docking.
    Sastry GM; Inakollu VS; Sherman W
    J Chem Inf Model; 2013 Jul; 53(7):1531-42. PubMed ID: 23782297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.