BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19485440)

  • 1. Nonlinear response of vibrational excitons: simulating the two-dimensional infrared spectrum of liquid water.
    Paarmann A; Hayashi T; Mukamel S; Miller RJ
    J Chem Phys; 2009 May; 130(20):204110. PubMed ID: 19485440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing intermolecular couplings in liquid water with two-dimensional infrared photon echo spectroscopy.
    Paarmann A; Hayashi T; Mukamel S; Miller RJ
    J Chem Phys; 2008 May; 128(19):191103. PubMed ID: 18500848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent infrared multidimensional spectra of the OH stretching band in liquid water simulated by direct nonlinear exciton propagation.
    Falvo C; Palmieri B; Mukamel S
    J Chem Phys; 2009 May; 130(18):184501. PubMed ID: 19449930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational energy relaxation of azide in water.
    Li S; Schmidt JR; Skinner JL
    J Chem Phys; 2006 Dec; 125(24):244507. PubMed ID: 17199355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water vibrations have strongly mixed intra- and intermolecular character.
    Ramasesha K; De Marco L; Mandal A; Tokmakoff A
    Nat Chem; 2013 Nov; 5(11):935-40. PubMed ID: 24153371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field fluctuations drive vibrational dephasing in water.
    Eaves JD; Tokmakoff A; Geissler PL
    J Phys Chem A; 2005 Oct; 109(42):9424-36. PubMed ID: 16866391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O.
    Cowan ML; Bruner BD; Huse N; Dwyer JR; Chugh B; Nibbering ET; Elsaesser T; Miller RJ
    Nature; 2005 Mar; 434(7030):199-202. PubMed ID: 15758995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic vibrational dynamics in the HCO2 (-)⋅H2O complex.
    Hamm P; Stock G
    J Chem Phys; 2015 Oct; 143(13):134308. PubMed ID: 26450315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bond dynamics of histamine monocation in aqueous solution: Car-Parrinello molecular dynamics and vibrational spectroscopy study.
    Stare J; Mavri J; Grdadolnik J; Zidar J; Maksić ZB; Vianello R
    J Phys Chem B; 2011 May; 115(19):5999-6010. PubMed ID: 21517054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Dynamics of Liquid Water: Energy Relaxation and Transfer Processes of the OH Stretch and the HOH Bend.
    Imoto S; Xantheas SS; Saito S
    J Phys Chem B; 2015 Aug; 119(34):11068-78. PubMed ID: 26042611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational dynamics of DNA. III. Molecular dynamics simulations of DNA in water and theoretical calculations of the two-dimensional vibrational spectra.
    Lee C; Park KH; Kim JA; Hahn S; Cho M
    J Chem Phys; 2006 Sep; 125(11):114510. PubMed ID: 16999493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational Quantum Decoherence in Liquid Water.
    Joutsuka T; Thompson WH; Laage D
    J Phys Chem Lett; 2016 Feb; 7(4):616-21. PubMed ID: 26807717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.
    Riga JM; Fredj E; Martens CC
    J Chem Phys; 2006 Feb; 124(6):64506. PubMed ID: 16483219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingerprints in IR OH vibrational spectra of H2O clusters from different H-bond conformations by means of quantum-chemical computations.
    Liu Y; Ojamäe L
    J Mol Model; 2014 Jun; 20(6):2281. PubMed ID: 24831534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple anharmonic vibrational probes of sugar structure and dynamics.
    Cai K; Wang J
    J Phys Chem B; 2009 Feb; 113(6):1681-92. PubMed ID: 19152255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water.
    Ito H; Tanimura Y
    J Chem Phys; 2016 Feb; 144(7):074201. PubMed ID: 26896979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
    Yagasaki T; Saito S
    Acc Chem Res; 2009 Sep; 42(9):1250-8. PubMed ID: 19469530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.