These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19485530)

  • 21. The electrodeless Lorentz force (ELF) thruster experimental facility.
    Weber TE; Slough JT; Kirtley D
    Rev Sci Instrum; 2012 Nov; 83(11):113509. PubMed ID: 23206064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-axis thrust stand for the direct characterization of electrospray performance.
    Gilpin MR; McGehee WA; Arnold NI; Natisin MR; Holley ZA
    Rev Sci Instrum; 2022 Jun; 93(6):065102. PubMed ID: 35778016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental study of a low-thrust measurement system for thruster ground tests.
    Gong J; Hou L; Zhao W
    Rev Sci Instrum; 2014 Mar; 85(3):035102. PubMed ID: 24689615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Note: Precision balance for sub-miliNewton resolution direct thrust measurement.
    Karadag B; Cho S; Funaki I
    Rev Sci Instrum; 2018 Aug; 89(8):086108. PubMed ID: 30184648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. rf power system for thrust measurements of a helicon plasma source.
    Kieckhafer AW; Walker ML
    Rev Sci Instrum; 2010 Jul; 81(7):075106. PubMed ID: 20687758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calibration methods for the simultaneous measurement of the impulse, mass loss, and average thrust of a pulsed plasma thruster.
    Yoshikawa T; Tsukizaki R; Kuninaka H
    Rev Sci Instrum; 2018 Sep; 89(9):095103. PubMed ID: 30278772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and characterization of a nano-Newton resolution thrust stand.
    Soni J; Roy S
    Rev Sci Instrum; 2013 Sep; 84(9):095103. PubMed ID: 24089862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 10 nN resolution thrust-stand for micro-propulsion devices.
    Chakraborty S; Courtney DG; Shea H
    Rev Sci Instrum; 2015 Nov; 86(11):115109. PubMed ID: 26628174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 100 KW Class Applied-field Magnetoplasmadynamic Thruster.
    Wang B; Tang H; Wang Y; Lu C; Zhou C; Dong Y; Wang G; Cong Y; Luu D; Cao J
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30614493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Traceable Calibration of Thrust Stand by Electrostatic Force.
    Wang B; Yang Y; Hu Z; Zheng Y
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a transient thrust stand with sub-millisecond resolution.
    Spells C; Craig A; Ketsdever A
    Rev Sci Instrum; 2019 Sep; 90(9):095105. PubMed ID: 31575275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A survey of propulsion options for cargo and piloted missions to Mars.
    Sankaran K; Cassady L; Kodys AD; Choueiri EY
    Ann N Y Acad Sci; 2004 May; 1017():450-67. PubMed ID: 15220162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precision electromagnetic calibration technique for micro-Newton thrust stands.
    He Z; Wu J; Zhang D; Lu G; Liu Z; Zhang R
    Rev Sci Instrum; 2013 May; 84(5):055107. PubMed ID: 23742589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifunctional design of inertially-actuated velocity feedback controllers.
    Elliott SJ; Rohlfing J; Gardonio P
    J Acoust Soc Am; 2012 Feb; 131(2):1150-7. PubMed ID: 22352490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.
    Zhang D; Wu J; Zhang R; Zhang H; He Z
    Rev Sci Instrum; 2013 Dec; 84(12):125113. PubMed ID: 24387474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and control of a pneumatically actuated inverted pendulum.
    Zilić T; Pavković D; Zorc D
    ISA Trans; 2009 Jul; 48(3):327-35. PubMed ID: 19398101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.