These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19485572)

  • 1. Shortened conditioned eyeblink response latency in male but not female Wistar-Kyoto hyperactive rats.
    Thanellou A; Schachinger KM; Green JT
    Behav Neurosci; 2009 Jun; 123(3):650-64. PubMed ID: 19485572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder.
    Chess AC; Green JT
    Behav Neurosci; 2008 Feb; 122(1):63-74. PubMed ID: 18298250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellar structure and function in male Wistar-Kyoto hyperactive rats.
    Thanellou A; Green JT
    Behav Neurosci; 2013 Apr; 127(2):311-24. PubMed ID: 23398437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two new inbred rat strains derived from SHR: WKHA, hyperactive, and WKHT, hypertensive, rats.
    Hendley ED; Ohlsson WG
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H583-9. PubMed ID: 1877683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic and biochemical characteristics of the aorta in the WKY, SHR, WKHT, and WKHA rat strains.
    Ricci MA; Slaiby JM; Hendley ED; Stirewalt W; Cloutier L; Nichols P; Evans JN
    Ann N Y Acad Sci; 1996 Nov; 800():121-30. PubMed ID: 8958987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medial temporal lobe functioning and structure in the spontaneously hypertensive rat: comparison with Wistar-Kyoto normotensive and Wistar-Kyoto hypertensive strains.
    Wells AM; Janes AC; Liu X; Deschepper CF; Kaufman MJ; Kantak KM
    Hippocampus; 2010 Jun; 20(6):787-97. PubMed ID: 19623608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder.
    Frings M; Gaertner K; Buderath P; Gerwig M; Christiansen H; Schoch B; Gizewski ER; Hebebrand J; Timmann D
    Exp Brain Res; 2010 Mar; 201(2):167-76. PubMed ID: 19777220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the validity of the use of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder in males and females.
    Bayless DW; Perez MC; Daniel JM
    Behav Brain Res; 2015 Jun; 286():85-92. PubMed ID: 25724583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of hypertensive and hyperactive rat strains: hyperactivity is not unitarily determined.
    Sagvolden T; Hendley ED; Knardahl S
    Physiol Behav; 1992 Jul; 52(1):49-57. PubMed ID: 1529013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial nerve growth factor (NGF) mRNA, protein, and vascular smooth muscle cell NGF secretion in hypertensive and hyperactive rats.
    Clemow DB; Spitsbergen JM; McCarty R; Steers WD; Tuttle JB
    Exp Cell Res; 1998 Oct; 244(1):196-205. PubMed ID: 9770362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-individual variability in genetic and environmental models of attention-deficit/hyperactivity disorder.
    Perry GM; Sagvolden T; Faraone SV
    Am J Med Genet B Neuropsychiatr Genet; 2010 Jul; 153B(5):1094-101. PubMed ID: 20468058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstrain aggression in hypertensive and/or hyperactive rats: SHR, WKY, WKHA, WKHT.
    Hendley ED; Ohlsson WG; Musty RE
    Physiol Behav; 1992 May; 51(5):1041-6. PubMed ID: 1615041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic characterization of novel strains of rats derived from crosses between Wistar-Kyoto and spontaneously hypertensive rats, and comparisons with their parental strains.
    Deschepper CF; Prescott G; Hendley ED; Reudelhuber TL
    Lab Anim Sci; 1997 Dec; 47(6):638-46. PubMed ID: 9433701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anterior pituitary proopiomelanocortin expression is decreased in hypertensive rat strains.
    Braas KM; Hendley ED
    Endocrinology; 1994 Jan; 134(1):196-205. PubMed ID: 8275934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychoneuroendocrine profile associated with hypertension or hyperactivity in spontaneously hypertensive rats.
    Castanon N; Hendley ED; Fan XM; Mormède P
    Am J Physiol; 1993 Dec; 265(6 Pt 2):R1304-10. PubMed ID: 8285270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extinction learning deficit in a rodent model of attention-deficit hyperactivity disorder.
    Brackney RJ; Cheung TH; Herbst K; Hill JC; Sanabria F
    Behav Brain Funct; 2012 Dec; 8():59. PubMed ID: 23237608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD).
    Watterson E; Daniels CW; Watterson LR; Mazur GJ; Brackney RJ; Olive MF; Sanabria F
    Behav Brain Res; 2015 Sep; 291():184-188. PubMed ID: 26008156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS.
    Zuchowski ML; Timmann D; Gerwig M
    Brain Stimul; 2014; 7(4):525-31. PubMed ID: 24776785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of growth rate and cell density on nerve growth factor secretion in cultures of vascular and bladder smooth muscle cells from hypertensive and hyperactive rats.
    Clemow DB; Tuttle JB
    Cell Tissue Res; 1998 Dec; 294(3):431-8. PubMed ID: 9799460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder.
    Green JT; Chess AC; Conquest CJ; Yegla BA
    Behav Neurosci; 2011 Dec; 125(6):979-87. PubMed ID: 22004263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.