BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19486212)

  • 21. Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus.
    Lucas PM; Blancato VS; Claisse O; Magni C; Lolkema JS; Lonvaud-Funel A
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2221-2230. PubMed ID: 17600066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of two functionally distinct ornithine decarboxylation systems in lactic acid bacteria.
    Romano A; Trip H; Lonvaud-Funel A; Lolkema JS; Lucas PM
    Appl Environ Microbiol; 2012 Mar; 78(6):1953-61. PubMed ID: 22247134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of cytolytic T lymphocyte maturation with ornithine, arginine, and putrescine.
    Susskind BM; Chandrasekaran J
    J Immunol; 1987 Aug; 139(3):905-12. PubMed ID: 2955052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance.
    Chen J; Cheng C; Xia Y; Zhao H; Fang C; Shan Y; Wu B; Fang W
    Microbiology (Reading); 2011 Nov; 157(Pt 11):3150-3161. PubMed ID: 21835877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal expression of different pathways of 1-arginine metabolism in healing wounds.
    Albina JE; Mills CD; Henry WL; Caldwell MD
    J Immunol; 1990 May; 144(10):3877-80. PubMed ID: 2332635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogenic amine production by Oenococcus oeni.
    Guerrini S; Mangani S; Granchi L; Vincenzini M
    Curr Microbiol; 2002 May; 44(5):374-8. PubMed ID: 11927990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circular dichroism assay for decarboxylation of optically pure amino acids: application to ornithine decarboxylase.
    Brooks HB; Phillips MA
    Anal Biochem; 1996 Jul; 238(2):191-4. PubMed ID: 8660610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Putrescine accumulation in wine: role of Oenococcus oeni.
    Mangani S; Guerrini S; Granchi L; Vincenzini M
    Curr Microbiol; 2005 Jul; 51(1):6-10. PubMed ID: 15971096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the role of GABA in vertebrate polyamine metabolism.
    Seiler N
    Physiol Chem Phys; 1980; 12(5):411-29. PubMed ID: 6782590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of dietary arginine restriction upon ornithine and polyamine metabolism during two-stage epidermal carcinogenesis in the mouse.
    Gonzalez GG; Byus CV
    Cancer Res; 1991 Jun; 51(11):2932-9. PubMed ID: 1903327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the Biogenic Amine Metabolic Landscape during Industrial Semidry Chinese Rice Wine Fermentation.
    Xia X; Zhang Q; Zhang B; Zhang W; Wang W
    J Agric Food Chem; 2016 Oct; 64(39):7385-7393. PubMed ID: 27622644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymology of the pathway for ATP production by arginine breakdown.
    Pols T; Singh S; Deelman-Driessen C; Gaastra BF; Poolman B
    FEBS J; 2021 Jan; 288(1):293-309. PubMed ID: 32306469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ornithine Decarboxylation System of Shewanella baltica Regulates Putrescine Production and Acid Resistance.
    Bao X; Wang F; Yang R; Zhang Y; Fu L; Wang Y
    J Food Prot; 2021 Feb; 84(2):303-309. PubMed ID: 33003195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis.
    Yarlett N; Martinez MP; Moharrami MA; Tachezy J
    Mol Biochem Parasitol; 1996 Jun; 78(1-2):117-25. PubMed ID: 8813682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.
    Noens EE; Lolkema JS
    Microbiologyopen; 2017 Feb; 6(1):. PubMed ID: 27804281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biogenic amine production by lactic acid bacteria isolated from cider.
    Garai G; DueƱas MT; Irastorza A; Moreno-Arribas MV
    Lett Appl Microbiol; 2007 Nov; 45(5):473-8. PubMed ID: 17958552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arginine catabolism in Lactobacillus sake isolated from meat.
    Montel MC; Champomier MC
    Appl Environ Microbiol; 1987 Nov; 53(11):2683-5. PubMed ID: 3426226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomics as a tool for studying energy metabolism in lactic acid bacteria.
    Pessione A; Lamberti C; Pessione E
    Mol Biosyst; 2010 Aug; 6(8):1419-30. PubMed ID: 20505866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginine catabolism by Thermanaerovibrio acidaminovorans.
    Plugge CM; Stams AJ
    FEMS Microbiol Lett; 2001 Feb; 195(2):259-62. PubMed ID: 11179661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):933-7. PubMed ID: 3897201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.