These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 19486540)

  • 21. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pocket to concavity: a tool for the refinement of protein-ligand binding site shape from alpha spheres.
    Kudo G; Hirao T; Yoshino R; Shigeta Y; Hirokawa T
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37086438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.
    Cerisier N; Regad L; Triki D; Camproux AC; Petitjean M
    J Comput Biol; 2017 Nov; 24(11):1134-1137. PubMed ID: 28570103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward prediction of functional protein pockets using blind docking and pocket search algorithms.
    Hetényi C; van der Spoel D
    Protein Sci; 2011 May; 20(5):880-93. PubMed ID: 21413095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal ligand descriptor for pocket recognition based on the Beta-shape.
    Kim JK; Won CI; Cha J; Lee K; Kim DS
    PLoS One; 2015; 10(4):e0122787. PubMed ID: 25835497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FPocketWeb: protein pocket hunting in a web browser.
    Kochnev Y; Durrant JD
    J Cheminform; 2022 Aug; 14(1):58. PubMed ID: 36008829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PROVAT: a tool for Voronoi tessellation analysis of protein structures and complexes.
    Gore SP; Burke DF; Blundell TL
    Bioinformatics; 2005 Aug; 21(15):3316-7. PubMed ID: 15932902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. POVME 3.0: Software for Mapping Binding Pocket Flexibility.
    Wagner JR; Sørensen J; Hensley N; Wong C; Zhu C; Perison T; Amaro RE
    J Chem Theory Comput; 2017 Sep; 13(9):4584-4592. PubMed ID: 28800393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. webPDBinder: a server for the identification of ligand binding sites on protein structures.
    Bianchi V; Mangone I; Ferrè F; Helmer-Citterich M; Ausiello G
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W308-13. PubMed ID: 23737450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites.
    Kawabata T; Go N
    Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.
    Shin WH; Bures MG; Kihara D
    Methods; 2016 Jan; 93():41-50. PubMed ID: 26427548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein-Ligand Interactions.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):134-147. PubMed ID: 29186950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free resources to assist structure-based virtual ligand screening experiments.
    Villoutreix BO; Renault N; Lagorce D; Sperandio O; Montes M; Miteva MA
    Curr Protein Pept Sci; 2007 Aug; 8(4):381-411. PubMed ID: 17696871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pocket extraction on proteins via the Voronoi diagram of spheres.
    Kim D; Cho CH; Cho Y; Ryu J; Bhak J; Kim DS
    J Mol Graph Model; 2008 Apr; 26(7):1104-12. PubMed ID: 18023220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Development and validation of programs for ligand-binding-pocket search].
    Oda A
    Yakugaku Zasshi; 2011; 131(10):1429-35. PubMed ID: 21963969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A critical assessment of docking programs and scoring functions.
    Warren GL; Andrews CW; Capelli AM; Clarke B; LaLonde J; Lambert MH; Lindvall M; Nevins N; Semus SF; Senger S; Tedesco G; Wall ID; Woolven JM; Peishoff CE; Head MS
    J Med Chem; 2006 Oct; 49(20):5912-31. PubMed ID: 17004707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and analysis of conserved pockets on protein surfaces.
    Cammisa M; Correra A; Andreotti G; Cubellis MV
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S9. PubMed ID: 23815589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MOLS 2.0: software package for peptide modeling and protein-ligand docking.
    Paul DS; Gautham N
    J Mol Model; 2016 Oct; 22(10):239. PubMed ID: 27638416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.