These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19487022)

  • 1. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization.
    Santos MI; Unger RE; Sousa RA; Reis RL; Kirkpatrick CJ
    Biomaterials; 2009 Sep; 30(26):4407-15. PubMed ID: 19487022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts.
    Ghanaati S; Fuchs S; Webber MJ; Orth C; Barbeck M; Gomes ME; Reis RL; Kirkpatrick CJ
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e136-43. PubMed ID: 21604380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature.
    Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures.
    Fuchs S; Jiang X; Gotman I; Makarov C; Schmidt H; Gutmanas EY; Kirkpatrick CJ
    Acta Biomater; 2010 Aug; 6(8):3169-77. PubMed ID: 20144913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.
    Ghanaati S; Unger RE; Webber MJ; Barbeck M; Orth C; Kirkpatrick JA; Booms P; Motta A; Migliaresi C; Sader RA; Kirkpatrick CJ
    Biomaterials; 2011 Nov; 32(32):8150-60. PubMed ID: 21821280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects.
    Rodrigues MT; Gomes ME; Viegas CA; Azevedo JT; Dias IR; Guzón FM; Reis RL
    J Tissue Eng Regen Med; 2011 Jan; 5(1):41-9. PubMed ID: 20603869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experimental study on adhesiveness of osteoblasts and vascular endothelial cells from rat BMSCs co-cultured on allogeneic freeze-dried partially bone in vitro].
    Chen C; Li Q; Sun R; Bai J; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Sep; 23(9):1129-33. PubMed ID: 19817304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular endothelial growth factor and fibroblast growth factor-2 incorporation in starch-based bone tissue-engineered constructs promote the in vivo expression of neovascularization mediators.
    Santos TC; Morton TJ; Moritz M; Pfeifer S; Reise K; Marques AP; Castro AG; Reis RL; van Griensven M
    Tissue Eng Part A; 2013 Apr; 19(7-8):834-48. PubMed ID: 23173745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo.
    McFadden TM; Duffy GP; Allen AB; Stevens HY; Schwarzmaier SM; Plesnila N; Murphy JM; Barry FP; Guldberg RE; O'Brien FJ
    Acta Biomater; 2013 Dec; 9(12):9303-16. PubMed ID: 23958783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo.
    Schumann P; Tavassol F; Lindhorst D; Stuehmer C; Bormann KH; Kampmann A; Mülhaupt R; Laschke MW; Menger MD; Gellrich NC; Rücker M
    Microvasc Res; 2009 Sep; 78(2):180-90. PubMed ID: 19540853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional co-cultures of osteoblasts and endothelial cells in DegraPol foam: histological and high-field magnetic resonance imaging analyses of pre-engineered capillary networks in bone grafts.
    Buschmann J; Welti M; Hemmi S; Neuenschwander P; Baltes C; Giovanoli P; Rudin M; Calcagni M
    Tissue Eng Part A; 2011 Feb; 17(3-4):291-9. PubMed ID: 20799888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel.
    Ekaputra AK; Prestwich GD; Cool SM; Hutmacher DW
    Biomaterials; 2011 Nov; 32(32):8108-17. PubMed ID: 21807407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copolymer cell/scaffold constructs for bone tissue engineering: co-culture of low ratios of human endothelial and osteoblast-like cells in a dynamic culture system.
    Xing Z; Xue Y; Finne-Wistrand A; Yang ZQ; Mustafa K
    J Biomed Mater Res A; 2013 Apr; 101(4):1113-20. PubMed ID: 23015514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of osteogenic construct using periosteal-derived osteoblasts and polydioxanone/pluronic F127 scaffold with periosteal-derived CD146 positive endothelial-like cells.
    Lee JH; Kim SW; Kim UK; Oh SH; June-Kim S; Park BW; Kim JH; Hah YS; Kim DR; Rho GJ; Maeng GH; Jeon RH; Lee HC; Kim JR; Kim GC; Byun JH
    J Biomed Mater Res A; 2013 Apr; 101(4):942-53. PubMed ID: 22961670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP).
    Wu PK; Ringeisen BR
    Biofabrication; 2010 Mar; 2(1):014111. PubMed ID: 20811126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering calcium deposits on polycaprolactone scaffolds for intravascular applications using primary human osteoblasts.
    Zhu B; Bailey SR; Mauli Agrawal C
    J Tissue Eng Regen Med; 2011 Apr; 5(4):324-36. PubMed ID: 20827712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix.
    Tuzlakoglu K; Santos MI; Neves N; Reis RL
    Tissue Eng Part A; 2011 Feb; 17(3-4):463-73. PubMed ID: 20825361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems.
    Unger RE; Dohle E; Kirkpatrick CJ
    Adv Drug Deliv Rev; 2015 Nov; 94():116-25. PubMed ID: 25817732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of co-culture with fibroblasts and angiogenic growth factors on microvascular maturation and multi-cellular lumen formation in HUVEC-oriented polymer fibre constructs.
    Sukmana I; Vermette P
    Biomaterials; 2010 Jul; 31(19):5091-9. PubMed ID: 20347133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts.
    Thein-Han W; Xu HH
    Tissue Eng Part A; 2013 Aug; 19(15-16):1675-85. PubMed ID: 23470207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.